• Title/Summary/Keyword: Image plate

Search Result 684, Processing Time 0.024 seconds

An image enhancement-based License plate detection method for Naturally Degraded Images

  • Khan, Khurram;Choi, Myung Ryul
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1188-1194
    • /
    • 2018
  • This paper proposes an image enhancement-based license plate detection algorithm to improve the overall performance of system. Non-uniform illumination conditions have huge impact on overall plate detection system accuracy. In this paper, we propose an algorithm for color image enhancement-based license plate detection for improving accuracy of images degraded by excessively strong and low sunlight. Firstly, the image is enhanced by Multi-Scale Retinex algorithm. Secondly, a plate detection method is employed to take advantage of geometric properties of connected components, which can significantly reduce the undesired plate regions. Finally, intersection over union method is applied for detecting the accurate location of number plate. Experimental results show that the proposed method significantly improves the accuracy of plate detection system.

A Study on Car License Plate Extraction using ACL Algorithm (ACL 알고리즘을 이용한 자동차 번호판 영역 추출에 대한 연구)

  • Jang, Seung-Ju;Shin, Byoung-Chul
    • The KIPS Transactions:PartD
    • /
    • v.9D no.6
    • /
    • pp.1113-1118
    • /
    • 2002
  • In recognition system of the car license plate, the most important is to extract the image of the license plate from a car image. In this paper, we use ACL (Adaptive Color Luminance) algorithm to extract the license plate image from a car image. The ACL algorithm that uses color and luminance information of a car image is used to extract the image of the license plate. In this paper, color, luminance and other related information of a car image are used to extract the image of the license plate from that of a car. In this reason, we call it the ACL algorithm. The ACL algorithm uses color, luminance information and other related information of a license plate. These informations are avaliable to exact the image of the license plate. The rate of extracting the image of the license plate from a car is 97%. The experimental result of the ACL algorithm for the character region is 92%.

License Plate Recognition System Using Artificial Neural Networks

  • Turkyilmaz, Ibrahim;Kacan, Kirami
    • ETRI Journal
    • /
    • v.39 no.2
    • /
    • pp.163-172
    • /
    • 2017
  • A high performance license plate recognition system (LPRS) is proposed in this work. The proposed LPRS is composed of the following three main stages: (i) plate region determination, (ii) character segmentation, and (iii) character recognition. During the plate region determination stage, the image is enhanced by image processing algorithms to increase system performance. The rectangular license plate region is obtained using edge-based image processing methods on the binarized image. With the help of skew correction, the plate region is prepared for the character segmentation stage. Characters are separated from each other using vertical projections on the plate region. Segmented characters are prepared for the character recognition stage by a thinning process. At the character recognition stage, a three-layer feedforward artificial neural network using a backpropagation learning algorithm is constructed and the characters are determined.

An image enhancement Method for extracting multi-license plate region

  • Yun, Jong-Ho;Choi, Myung-Ryul;Lee, Sang-Sun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.6
    • /
    • pp.3188-3207
    • /
    • 2017
  • In this paper, we propose an image enhancement algorithm to improve license plate extraction rate in various environments (Day Street, Night Street, Underground parking lot, etc.). The proposed algorithm is composed of image enhancement algorithm and license plate extraction algorithm. The image enhancement method can improve an image quality of the degraded image, which utilizes a histogram information and overall gray level distribution of an image. The proposed algorithm employs an interpolated probability distribution value (PDV) in order to control a sudden change in image brightness. Probability distribution value can be calculated using cumulative distribution function (CDF) and probability density function (PDF) of the captured image, whose values are achieved by brightness distribution of the captured image. Also, by adjusting the image enhancement factor of each part region based on image pixel information, it provides a function that can adjust the gradation of the image in more details. This processed gray image is converted into a binary image, which fuses narrow breaks and long thin gulfs, eliminates small holes, and fills gaps in the contour by using morphology operations. Then license plate region is detected based on aspect ratio and license plate size of the bound box drawn on connected license plate areas. The images have been captured by using a video camera or a personal image recorder installed in front of the cars. The captured images have included several license plates on multilane roads. Simulation has been executed using OpenCV and MATLAB. The results show that the extraction success rate is more improved than the conventional algorithms.

Vehicle License Plate Recognition System Using Image Binarization and Template Matching (영상 이진화와 템플릿 매칭을 이용한 자동차 번호판 인식 시스템)

  • Oh, Soojin;Park, Chun-Su
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.2
    • /
    • pp.7-12
    • /
    • 2014
  • A vehicle license plate includes the most important information for recognition and classification of the vehicle. In this paper, we propose a vehicle license plate recognition system using image binarization and template matching. In the proposed system, an image of the vehicle license plate is converted into a gray scale image and the gray image undergoes the binarization process. Finally, the numbers on the plate are extracted from the binary image using the template matching algorithm.

Development of an image processing algorithm for the recognition of car types and number plates (차종, 번호판 위치 및 자동차 번호판 인식을 위한 영상처리 알고리즘개발)

  • 김희식;이평원;김영재
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1718-1721
    • /
    • 1997
  • An image processing algorithm is developed in order to recognize the type of cars, the position of a number plate and the characters on the plate. to recognize the type of cars, comparison of two images is used. One has a car image, the other is just a background image without car. After that recognition, a vertical line filter is used to find the location of the plate. Finally the simularity mehod is used to recognize the numbers on plates.

  • PDF

A License-Plate Image Binarization Algorithm Based on Least Squares Method for License-Plate Recognition of Automobile Black-Box Image (블랙박스 영상용 자동차 번호판 인식을 위한 최소 자승법 기반의 번호판 영상 이진화 알고리즘)

  • Kim, Jin-young;Lim, Jongtae;Heo, Seo Weon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.5
    • /
    • pp.747-753
    • /
    • 2018
  • In the license-plate recognition systems for automobile black Image, the license-plate image frequently has a shadow due to outdoor environments which are frequently changing. Such a shadow makes unpredictable errors in the segmentation process of individual characters and numbers of the license plate image, and reduces the overall recognition rate. In this paper, to improve the recognition rate in these circumstance, a license-plate image binarization algorithm is proposed removing the shadow effectively. The propose algorithm splits the license-plate image into the regions with the shadow and without. To find out the boundary of two regions, the algorithm estimates the curve for shadow boundary using the least-squares method. The simulation is performed for the license-plate image having its shadow, and the results show much higher recognition rate than the previous algorithm.

Day and night license plate detection using tail-light color and image features of license plate in driving road images

  • Kim, Lok-Young;Choi, Yeong-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.7
    • /
    • pp.25-32
    • /
    • 2015
  • In this paper, we propose a license plate detection method of running cars in various road images. The proposed method first classifies the road image into day and night images to improve detection accuracy, and then the tail-light regions are detected by finding red color areas in RGB color space. The candidate regions of the license plate areas are detected by using symmetrical property, size, width and variance of the tail-light regions, and to find the license plate areas of the various sizes the morphological operations with adaptive size structuring elements are applied. Finally, the plate area is verified and confirmed with the geometrical and image features of the license plate areas. The proposed method was tested with the various road images and the detection rates (precisions) of 84.2% of day images and 87.4% of night images were achieved.

Image Processing-based Validation of Unrecognizable Numbers in Severely Distorted License Plate Images

  • Jang, Sangsik;Yoon, Inhye;Kim, Dongmin;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.1
    • /
    • pp.17-26
    • /
    • 2012
  • This paper presents an image processing-based validation method for unrecognizable numbers in severely distorted license plate images which have been degraded by various factors including low-resolution, low light-level, geometric distortion, and periodic noise. Existing vehicle license plate recognition (LPR) methods assume that most of the image degradation factors have been removed before performing the recognition of printed numbers and letters. If this is not the case, conventional LPR becomes impossible. The proposed method adopts a novel approach where a set of reference number images are intentionally degraded using the same factors estimated from the input image. After a series of image processing steps, including geometric transformation, super-resolution, and filtering, a comparison using cross-correlation between the intentionally degraded reference and the input images can provide a successful identification of the visually unrecognizable numbers. The proposed method makes it possible to validate numbers in a license plate image taken under low light-level conditions. In the experiment, using an extended set of test images that are unrecognizable to human vision, the proposed method provides a successful recognition rate of over 95%, whereas most existing LPR methods fail due to the severe distortion.

  • PDF

A COMPARISON OF RADIAL BASIS FUNCTIONS IN APPLICATIONS TO IMAGE MORPHING

  • Jin, Bo-Ram;Lee, Yong-Hae
    • The Pure and Applied Mathematics
    • /
    • v.17 no.4
    • /
    • pp.321-332
    • /
    • 2010
  • In this paper, we experiment image warping and morphing. In image warping, we use radial basis functions : Thin Plate Spline, Multi-quadratic and Gaussian. Then we obtain the fact that Thin Plate Spline interpolation of the displacement with reverse mapping is the efficient means of image warping. Reflecting the result of image warping, we generate two examples of image morphing.