• Title/Summary/Keyword: Image pixel

Search Result 2,500, Processing Time 0.026 seconds

Analysis on optical property in the South Sea of Korea by using Satellite Image : Study of Case on red tide occurrence in August 2013 (위성영상을 활용한 한국 남해의 광학적 특성 연구 : 2013년 8월 발생한 적조 사례를 중심으로)

  • Bak, Su-Ho;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.7
    • /
    • pp.723-728
    • /
    • 2016
  • This study is analyzed the optical property of red tide pixel by using Landsat-7 ETM+, Landsat-8 OLI and COMS/GOCI image. In order to sample red tide pixel, Landsat-7, 8 true color image were used and obtained coordinate of red tide pixel in the true color image. Normalized water leaving radiance(nLw) and absorption coefficient were obtained from GOCI image in the same coordinate of the true color image. When red tide was not occurred the main absorption range was 412nm and 660nm but when red tide occurred it was 660nm and absorption coefficient in 412nm are drastically reduced. It made no difference of nLw spectrum between red tide pixel and non red tide pixel in nLw, but the absolute value of nLw was low than non red tide pixel, especially 660nm and 680nm wavelength sharply decrease.

Image encryption using phase-based virtual image and interferometer

  • Seo, Dong-Hoan;Shin, Chang-Mok;Kim, Jong-Yun;Bae, Jang-Keun;Kim, Jeong-Woo;Kim, Soo-Joong
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.631-634
    • /
    • 2002
  • In this paper, we propose an improved optical security system using three phase-encoded images and the principle of interference. This optical system based on a Mach-Zehnder interferometer consists of one phase-encoded virtual image to be encrypted and two phase-encoded images, encrypting image and decrypting image, where every pixel in the three images has a phase value of '0' and '$\pi$'. The proposed encryption is performed by the multiplication of an encrypting image and a phase-encoded virtual image which dose not contain any information from the decrypted image. Therefore, even if the unauthorized users steal and analyze the encrypted image, they cannot reconstruct the required image. This virtual image protects the original image from counterfeiting and unauthorized access.. The decryption of the original image is simply performed by interfering between a reference wave and a direct pixel-to-pixel mapping image of the encrypted image with a decrypting image. Both computer simulations and optical experiments confirmed the effectiveness of the proposed optical technique for optical security applications.

  • PDF

EFFICIENT IHS BASED IMAGE FUSION WITH 'COMPENSATIVE' MATRIX CONSTRUCTED BY SIMULATING THE SCALING PROCESS

  • Nguyen, TienCuong;Kim, Dae-Sung;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.639-642
    • /
    • 2006
  • The intensity-hue-saturation (IHS) technique has become a standard procedure in image analysis. It enhances the colour of highly correlated data. Unfortunately, IHS technique is sensitive to the properties of the analyzed area and usually faces colour distortion problems in the fused process. This paper explores the relationship of colour between before and after the fused process and the change in colour space of images. Subsequently, the fused colours are transformed back into the 'simulative' true colours by the following steps: (1) For each pixel of fused image that match with original pixel (of the coarse spectral resolution image) is transformed back to the true colour of original pixel. (2) The value for interpolating pixels is compensated to preserve the DN ratio between the original pixel and it's vicinity. The 'compensative matrix' is constructed by the DN of fused images and simulation of scaling process. An illustrative example of a Landsat and SPOT fused image also demonstrates the simulative true colour fusion methods.

  • PDF

Removing Shadows for the Surveillance System Using a Video Camera (비디오 카메라를 이용한 감시 장치에서 그림자의 제거)

  • Kim, Jung-Dae;Do, Yong-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.176-178
    • /
    • 2005
  • In the images of a video camera employed for surveillance, detecting targets by extracting foreground image is of great importance. The foreground regions detected, however, include not only moving targets but also their shadows. This paper presents a novel technique to detect shadow pixels in the foreground image of a video camera. The image characteristics of video cameras employed, a web-cam and a CCD, are first analysed in the HSV color space and a pixel-level shadow detection technique is proposed based on the analysis. Compared with existing techniques where unified criteria are used to all pixels, the proposed technique determines shadow pixels utilizing a fact that the effect of shadowing to each pixel is different depending on its brightness in background image. Such an approach can accommodate local features in an image and hold consistent performance even in changing environment. In experiments targeting pedestrians, the proposed technique showed better results compared with an existing technique.

  • PDF

Triqubit-State Measurement-Based Image Edge Detection Algorithm

  • Wang, Zhonghua;Huang, Faliang
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1331-1346
    • /
    • 2018
  • Aiming at the problem that the gradient-based edge detection operators are sensitive to the noise, causing the pseudo edges, a triqubit-state measurement-based edge detection algorithm is presented in this paper. Combing the image local and global structure information, the triqubit superposition states are used to represent the pixel features, so as to locate the image edge. Our algorithm consists of three steps. Firstly, the improved partial differential method is used to smooth the defect image. Secondly, the triqubit-state is characterized by three elements of the pixel saliency, edge statistical characteristics and gray scale contrast to achieve the defect image from the gray space to the quantum space mapping. Thirdly, the edge image is outputted according to the quantum measurement, local gradient maximization and neighborhood chain code searching. Compared with other methods, the simulation experiments indicate that our algorithm has less pseudo edges and higher edge detection accuracy.

A Sclable Parallel Labeling Algorithm on Mesh Connected SIMD Computers (메쉬 구조형 SIMD 컴퓨터 상에서 신축적인 병렬 레이블링 알고리즘)

  • 박은진;이갑섭성효경최흥문
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.731-734
    • /
    • 1998
  • A scalable parallel algorithm is proposed for efficient image component labeling with local operatos on a mesh connected SIMD computer. In contrast to the conventional parallel labeling algorithms, where a single pixel is assigned to each PE, the algorithm presented here is scalable and can assign m$\times$m pixel set to each PE according to the input image size. The assigned pixel set is converted to a single pixel that has representative value, and the amount of the required memory and processing time can be highly reduced. For N$\times$N image, if m$\times$m pixel set is assigned to each PE of P$\times$P mesh, where P=N/m, the time complexity due to the communication of each PE and the computation complexity are reduced to O(PlogP) bit operations and O(P) bit operations, respectively, which is 1/m of each of the conventional method. This method also diminishes the amount of memory in each PE to O(P), and can decrease the number of PE to O(P2) =Θ(N2/m2) as compared to O(N2) of conventional method. Because the proposed parallel labeling algorithm is scalable, we can adapt to the increase of image size without the hardware change of the given mesh connected SIMD computer.

  • PDF

Graph Area Separation from A Sea Level Measurement Recording Image (조위관측기록 이미지로부터의 그래프 영역 분리)

  • Yu, Young-Jung;Park, Seong-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.1
    • /
    • pp.175-182
    • /
    • 2013
  • The digitalization of sea level measurement recording which is recorded as analog type is useful for many related oceanology. In this paper, we propose a method which separates the graph area from a sea level measurement recording image. At first, a pixel that is regarded as the pixel which is included in the graph area is selected. Then, many background pixels are separated using the color of the selected pixel. In each vertical line, a pixel is determined as the pixel within the graph area and the graph area is separated from the image using that pixels. Experimental results show that the proposed method in this paper overcome drawbacks of the previous research and can separate the graph area which similar to the graph area of the original image.

Measurements of Impervious Surfaces - per-pixel, sub-pixel, and object-oriented classification -

  • Kang, Min Jo;Mesev, Victor;Kim, Won Kyung
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.4
    • /
    • pp.303-319
    • /
    • 2015
  • The objectives of this paper are to measure surface imperviousness using three different classification methods: per-pixel, sub-pixel, and object-oriented classification. They are tested on high-spatial resolution QuickBird data at 2.4 meters (four spectral bands and three principal component bands) as well as a medium-spatial resolution Landsat TM image at 30 meters. To measure impervious surfaces, we selected 30 sample sites with different land uses and residential densities across image representing the city of Phoenix, Arizona, USA. For per-pixel an unsupervised classification is first conducted to provide prior knowledge on the possible candidate spectral classes, and then a supervised classification is performed using the maximum-likelihood rule. For sub-pixel classification, a Linear Spectral Mixture Analysis (LSMA) is used to disentangle land cover information from mixed pixels. For object-oriented classification several different sets of scale parameters and expert decision rules are implemented, including a nearest neighbor classifier. The results from these three methods show that the object-oriented approach (accuracy of 91%) provides more accurate results than those achieved by per-pixel algorithm (accuracy of 67% and 83% using Landsat TM and QuickBird, respectively). It is also clear that sub-pixel algorithm gives more accurate results (accuracy of 87%) in case of intensive and dense urban areas using medium-resolution imagery.

Circle calibration distorted by camera lense (렌즈에 의해 왜곡된 원영상의 교정)

  • 최춘호;문철홍
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.721-724
    • /
    • 1998
  • A circular image in a space don't appear as an exact circular image and appear as an oval in image buffer because distortion of camera lens, number of horizontal pixel of CCD photographing element and unmber of horizontal pixel of image buffer are not in accordance. By using familiar 3-D coordinate, know as circle's diameter, and cicle's center, you correct a pin-hole camera and get an exact circle with reprojection a circle into image buffer, according to a perspective.

  • PDF

Automatic Determination of Matching Window Size Using Histogram of Gradient (그레디언트 히스토그램을 이용한 정합 창틀 크기의 자동적인 결정)

  • Ye, Chul-Soo;Moon, Chang-Gi
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.2
    • /
    • pp.113-117
    • /
    • 2007
  • In this paper, we propose a new method for determining automatically the size of the matching window using histogram of the gradient in order to improve the performance of stereo matching using one-meter resolution satellite imagery. For each pixel, we generate Flatness Index Image by calculating the mean value of the vertical or horizontal intensity gradients of the 4-neighbors of every pixel in the entire image. The edge pixel has high flatness index value, while the non-edge pixel has low flatness index value. By using the histogram of the Flatness Index Image, we find a flatness threshold value to determine whether a pixel is edge pixel or non-edge pixel. If a pixel has higher flatness index value than the flatness threshold value, we classify the pixel into edge pixel, otherwise we classify the pixel into non-edge pixel. If the ratio of the number of non-edge pixels in initial matching window is low, then we consider the pixel to be in homogeneous region and enlarge the size of the matching window We repeat this process until the size of matching window reaches to a maximum size. In the experiment, we used IKONOS satellite stereo imagery and obtained more improved matching results than the matching method using fixed matching window size.