본 논문에서는 색조영상의 R-, G-, B-성분에서 랜덤결측된 화소값들의 대체를 위한 프리퀀티스틱(frequentictic) 기법을 제공한다. 이 기법은 관측영상을 가우시안 마코프 랜덤필드 상의 실현치로서 가정하고, 주어진 화소 내의 근방 화소들이 에지 강도에 따른 서로 다른 분산을 가지는 정규분포를 따른다고 설계함으로써 에지에서 결측화소 대체값이 이질적 색상에 영향 받지 않도록 한다. 이러한 모형하에서 우도가 최대화하도록 결측화소값들을 근사 EM 알고리즘에 기반 한 방법으로 모수들을 추정하고 결측화소를 대체한다. 제안된 방법의 결과들은 보간법에 기초한 대체법과 비교하여 그 유효성을 보인다.
The pixel size in high-resolution complementary metal-oxide-semiconductor (CMOS) image sensors continues to shrink due to chip size limitations. However, the pixel pitch's miniaturization causes deterioration of optical performance. As one solution, a quad color filter (CF) array with pixel binning has been developed to enhance sensitivity. For high sensitivity, the microlens structure also needs to be optimized as the CF arrays change. In this paper, the covered microlens, which consist of four microlenses covered by one large microlens, are proposed for the quad CF array in the backside illumination pixel structure. To evaluate the optical performance, the suggested microlens structure was simulated from 0.5 ㎛ to 1.0 ㎛ pixels at the center and edge of the sensors. Moreover, all pixel structures were compared with and without in-pixel deep trench isolation (DTI), which works to distribute incident light uniformly into each photodiode. The suggested structure was evaluated with an optical simulation using the finite-difference time-domain method for numerical analysis of the optical characteristics. Compared to the conventional microlens, the suggested microlens show 29.1% and 33.9% maximum enhancement of sensitivity at the center and edge of the sensor, respectively. Therefore, the covered microlens demonstrated the highly sensitive image sensor with a quad CF array.
In this paper, an advanced reversible data hiding algorithm which takes the advantage of the spatial locality in image was proposed. Natural image has a spatial locality. The pixel value of a natural image is similar to the values of neighboring pixels. So, using the neighboring pixel values, it is possible to precisely predict the pixel value. Frequency increases significantly at the peak point of the difference histogram using the predicted values. Therefore, it is possible to increase the amount of data to be embedded. By using the proposed algorithm, visually high quality stego-image can be generated, the original cover image and the embedded data can be extracted from the stego-image without distortion. The embedding data into the cover image of the proposed algorithm is much lager than that of the previous algorithm. The performance of the proposed algorithm was verified by experiment. The proposed algorithm is very useful for the reversible data hiding.
x선 영상은 각종 의료 검진 분야와 보안검사에 널리 이용되고 있다. 하지만 대부분의 x선 영상은 잡음을 포함하고 있으며 이러한 잡음은 x선 영상분석에 방해가 되기 때문에 x선 영상의 잡음을 제거할 필요가 있다. 본 논문은 화소값 가중치와 화소 거리 가중치를 이용하여 x선 영상의 잡음을 제거하는 방법을 제안한다. 제안하는 알고리즘은 먼저 양방향 필터를 이용하여 x선 영상의 노이즈를 1차적으로 제거하고 원본 x선 영상의 경계 영역을 추정한다. 그 후 현재 화소가 경계 영역에 속한다면 해당화소를 포함하는 $3{\times}3$ 영역의 화소들에 대한 원본화소와 노이즈제거 화소를 이용하여 가중치를 구하고 경계 화소값 결정을 위한 비용계산을 수행한다. 그 후 가장 작은 경계 화소값 결정 비용을 가지는 화소 값을 결과영상의 화소값으로 정한다. 제안하는 알고리즘은 PSNR 및 주관적 화질 비교에서 우수한 성능을 보였다.
본 논문에서는 함정전투체계의 EOTS나 IRST에서 획득한 영상을 초고해상도 영상으로 복원한다. 저해상도에서 초고해상도의 영상을 생성하는 생성 모델과 이를 판별하는 판별 모델로 구성된 생성적 적대 신경망을 이용하고, 다양한 학습 파라미터의 변화를 통한 최적의 값을 제안한다. 실험에 사용되는 학습 파라미터는 crop size와 sub-pixel layer depth, 학습 이미지 종류로 구성되며, 평가는 일반적인 영상 품질 평가 지표에 추가적으로 특징점 추출 알고리즘을 함께 사용하였다. 그 결과, Crop size가 클수록, Sub-pixel layer depth가 깊을수록, 고해상도의 학습이미지를 사용할수록 더 좋은 품질의 영상을 생성한다.
CMOS image sensor는 집적회로 구현이 가능하여 사이즈를 줄일 수 있고 저전력으로 구현이 가능하며 효율적인 영상처리를 할 수 있다는 장점을 갖고 있다. 그러나 불량화소의 발생은 곧 화질의 저하로 연결되기 때문에 불량화소를 검출하는 방법에 대한 연구가 필요하다. 본 논문에서는 CMOS image sensor에 사용되는 효율적인 불량화소 검출 알고리듬과 그 하드웨어를 제안하였다. 불량화소를 검출하기 위하여 본 논문에서 제안한 방법은 Scan, Trace, Detection의 단계를 거친다. 시뮬레이션 결과 특정 조건에서는 99.99%의 불량화소 걸출 성공률을 나타냈다. 제안된 알고리듬은 Verilog HDL로 구현되었으며, 0.25 CMOS standard cell library에서 3.2k개의 게이트 수를 갖는다.
In this paper, we propose an edge detection algorithm for auto focus of infrared camera. We designed and implemented the edge detection of infrared image by using a spatial filter on FPGA. The infrared camera should be designed to minimize the image processing time and usage of hardware resource because these days surveillance systems should have the fast response and be low size, weight and power. we applied the $3{\times}3$ mask filter which has an advantage of minimizing the usage of memory and the propagation delay to process filtering. When we applied Laplacian filter to extract contour data from an image, not only edge components but also noise components of the image were extracted by the filter. These noise components make it difficult to determine the focus state. Also a bad pixel of infrared detector causes a problem in detecting the edge components. So we propose an adaptive edge detection filter that is a method to extract only edge components except noise components of an image by analyzing a variance of pixel data in $3{\times}3$ memory area. And we can detect the bad pixel and replace it with neighboring normal pixel value when we store a pixel in $3{\times}3$ memory area for filtering calculation. The experimental result proves that the proposed method is effective to implement the edge detection for auto focus in infrared camera.
디지털 프린터와 같은 이진 출력 장치에서 영상을 표현하기 위해서는 연속 계조 영상을 이진 영상으로 변환하는 해프토닝 기법이 요구된다. 본 논문에서는 이진화 된 영상에서 균일한 도트들의 분포를 얻기 위하여 새로운 오차확산 방법을 제안한다. 제안하는 방법에서는 먼저, 현재 이진화 하려는 화소와 이미 이진화 된 소수화소(minor pixel)들간의 최소거리를 '최소화소거리(minimum pixel distance)'라 정의한다. 또한, 오차확산방법에의 적용을 위하여 계조값을 새로운 주거리 기반의 변수로 변환한다. 기존의 오차확산 방법에서는 이진화에 따르는 계조값의 차이를 주위 화소들에 전파하는데 반하여 제안하는 방법에서는 주거리상의 차이가 전파된다. 이진화 과정에서는 최소화소거리가 문턱치로 사용된다. 본 논문에서는 최소화소거리를 계산하는 방법으로 'MPOA'(Minor Pixel Offset Array)를 제안한다. MPOA는 이미 이진화 된 영역의 이진 화소의 종류와 2차원상의 위치를 1차원으로 표현하는 기법으로서 최소화소거리의 계산에 필요한 메모리와 계산량을 크게 감소시킨다.
이미지로부터 돌출 영역을 추출하는 것은 이후의 다양한 이미지 처리를 위한 사전 작업으로서 중요한 의미를 가진다. 이 논문에서는 하나의 이미지에서 각 픽셀의 돌출 값을 추정하기 위한 개선된 방법을 소개한다. 논문에서 제안되는 방법은 이전에 연구된 색상과 통계적 방법을 이용한 돌출 값 추정 방법을 개선한 방법이다. 먼저 이미지에서 픽셀들의 색상관계를 이용해 각 픽셀의 돌출 값을 계산하고, 이 값을 근거로 중심 돌출 픽셀을 추정한다. 추정된 중심 돌출 픽셀을 기준으로 가우스 가중치를 적용하여 각 픽셀의 돌출 값을 재추정하고, 통계적 돌출 값 추정에 적용할 초기 확률을 위해 각 픽셀의 돌출 여부가 결정된다. 마지막으로 각 픽셀의 돌출 값은 베이즈 확률을 사용하여 계산된다. 실험결과는 본 논문의 적용 방법이 적정한 크기의 돌출 영역을 가진 이미지에 대해 이전의 방법보다 우수한 결과를 보임을 보여준다.
인공지능 기술의 급격한 발전으로 다양한 분야에서 적극적으로 활용되고 있으나, 이와 함께 인공지능 기반 시스템에 대한 공격 위협이 증가하고 있다. 특히, 딥러닝에서 사용되는 인공신경망은 입력 데이터를 고의로 변형시켜 모델의 오류를 유발하는 적대적 공격에 취약하다. 본 연구에서는 이미지에서 단 하나의 픽셀 정보만을 변형시킴으로써 시각적으로 인지하기 어려운 One-Pixel 공격으로부터 이미지 분류 모델을 보호하기 위한 방법을 제안한다. 제안된 방어 기법은 오토인코더 모델을 이용하여 분류 모델에 입력 이미지가 전달되기 전에 잠재적 공격 이미지에서 위협 요소를 제거한다. CIFAR-10 데이터셋을 이용한 실험에서 본 논문에서 제안하는 오토인코더 기반의 One-Pixel 공격 방어 기법을 적용한 사전 학습 이미지 분류 모델들은 기존 모델의 수정 없이도 One-Pixel 공격에 대한 강건성이 평균적으로 81.2% 향상되는 결과를 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.