• Title/Summary/Keyword: Image noise

Search Result 3,336, Processing Time 0.032 seconds

A Study on Median Filter using Directional Mask in Salt & Pepper Noise Environments (Salt & Pepper 잡음 환경에서 방향성 마스크를 이용한 메디안 필터에 관한 연구)

  • Hong, Sang-Woo;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.1
    • /
    • pp.230-236
    • /
    • 2015
  • In these digital times, the image signal processing is being used in various areas like vehicle recognition, security, and robotics. Generally, the image deterioration occurs by salt & pepper noise in the procedures of image transmission, storage, and processing. Methods to remove this noise are SMF, CWMF, and SWMF and these methods have few unsatisfactory noise reduction characteristics in salt & pepper noise environment. Therefore, in order to mitigate salt & pepper noise which is added in the image, this study suggested an algorithm which subdivides the masks in the image into four areas and processes using non-noise pixel numbers in each area. Additionally, in order to prove the excellence of the proposed algorithm, relevant performances were compared with existing methods using PSNR.

Salt and Pepper Noise Removal using Effective Pixels and Linear Interpolation (유효화소와 선형보간법을 이용한 Salt and Pepper 잡음제거)

  • Lee, Hwa-Yeong;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.7
    • /
    • pp.989-995
    • /
    • 2022
  • Currently, the demand for image processing is increasing due to the development of IT technology, and active research is being conducted. Since image data generates image noise due to various external causes, and thus degrades the performance of the image, noise removal is essential. Salt and Pepper noise is a representative image noise, and various studies are being conducted to remove it. Existing algorithms include A-TMF, AFMF, LIWF, but these have the disadvantage that their performance is somewhat insufficient. Therefore, in this paper, we propose an algorithm that performs filtering using linear interpolation with effective pixels existing around the central pixel only in case of noise after performing noise judgment in order to efficiently remove salt and pepper noise. In order to judge the performance of the proposed algorithm, it was compared using the processed image of the previously studied algorithm and PSNR.

Salt and Pepper Noise Removal using Modified Distance Weight Filter (변형된 거리가중치 필터를 이용한 Salt and Pepper 잡음제거)

  • Lee, Hwa-Yeong;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.441-443
    • /
    • 2022
  • Currently, image processing is being used in various fields such as image analysis, image recognition, and factory automation according to the development of IT technology. Salt and pepper noise is generated due to various external factors in the process of acquiring or transmitting an image, which deteriorates the image quality. Therefore, noise removal to improve image quality is essential. Various methods have been proposed to remove salt and pepper noise, and representative examples include AF, MF, and A-TMF. However, the conventional filter has insufficient noise removal performance in a high-density noise environment. Therefore, in this paper, we propose an algorithm for estimating and processing the original pixel by using the modified distance weight filter only in the case of noise, and replacing the original pixel in case of non-noise after performing noise judgment. To evaluate the performance of the proposed algorithm, we compare and analyze it with existing algorithms using PSNR.

  • PDF

Speckle noise reduction in SAR images using an adaptive wavelet Shrinkage method

  • Kim, Kwang-Yong;Jeong, Soo;Kim, Kyung-Ok
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.303-307
    • /
    • 2002
  • Although Synthetic Aperture Radar(SAR) is a very powerful and attractive tool, automatic interpretation of SAR images is extremely difficult because of several reason. Spatially, speckle noise reduction in SAR images is important step to interpret the SAR image at the preprocessing step. The speckle noise in SAR images is modeled to be multiplicative, and therefore, a signal-dependent noise. So, it has deflated many image-denoising algorithms that are based on additive noise model. In this paper, we propose an adaptive wavelet shrinkage method for speckle noise reduction in SAR images by analyzing the high frequency level in detail. We first decompose minutely the high frequency level to analyze the noise level. And then, we determine the weighting threshold value per the level, and layer. Finally, using those weighting threshold, we produce the efficient wavelet shrinkage method. So, this method not only reduces the speckle noise, but also preserves image detail and sharpness.

  • PDF

Alpha-trimmed Mean Filter for Impulse Noise Removal (임펄스 잡음 제거를 위한 알파트림 평균 필터)

  • Kim, Kuk-Seung;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.393-396
    • /
    • 2010
  • In this paper the process of transmitting images signal restore to image corrupted by impulse noise proposed alpha-trimmed mean filter. the proposed filter first identifies the noise pixels using the morphological noise detector and then removes the detected impulse noise using the alpha-trimmed mean filter. these proposed filter can realize the accurate noise detection and it can remove impulse noise effectively while preserving edge region in the image very well. Through the simulation, we compared with the existing methods and capabilties.

  • PDF

Evaluation of Unexposed Images after Erasure of Image Plate from CR System (CR 시스템에서 IP 잠상의 소거 후 Unexposed Image의 평가)

  • Lim, Bo-Yeon;Park, Hye-Suk;Kim, Ju-Hye;Park, Kwang-Hyun;Kim, Hee-Joung
    • Progress in Medical Physics
    • /
    • v.20 no.4
    • /
    • pp.199-207
    • /
    • 2009
  • It is important to initialize Image Plate (IP) completely for removing residual latent image by sodium lamp for reliability and repeatability of computed radiography (CR) system. The purpose of this study was to evaluate latent images of computed radiography (CR) images respect to delay time after erasure of foregone latent image and its effect, and erasure level. Erasure thoroughness for CR acceptance test from American Association of Physicist in Medicine (AAPM) Report 93 (2006) was also evaluated. Measurements were made on a CR (Agfa CR 25; Agfa, BELGIUM) system. Chest postero-anterior (PA), Hand PA, L-spine lateral radiographs were chosen for evaluation. Chest phantom (3D-torso; CIRS, USA) was used for Chest PA and L-spine lateral radiography. For Hand PA radiography, projections was done without phantom. Except Hand PA radiographs, noise was increased with delay time, and ghost image was appeared on overexposed area. Effect of delay after erasure on latent image was not seen on naked eye, but standard deviation (SD) of pixel value on overexposed area was relatively higher than that of other areas. On Hand PA and Chest PA radiographs, noise were not occurred by adjustment of erasure level. On L-spine lateral images at lower erasure level than standard level, noise including ghost image were occurred because of high tube current. Erasure thoroughness of CR system in our department was to be proved by these evaluation. The results of this study could be used as a baseline for IP initialization and reliability of CR images.

  • PDF

Noise additived image encoding By EZW algorithm (EZW를 이용한 잡음 영상의 부호화)

  • 김형준;김재필;김향진;김영애;임재윤
    • Proceedings of the IEEK Conference
    • /
    • 2000.06d
    • /
    • pp.27-30
    • /
    • 2000
  • In this paper, we propose new method for denoising in processing the image compression. Usually, to compress the noise image, we must have the denoising step before encoding. But this method has a embedded character, so need not an additional noise eliminator. In SAQ step, an embedded signal is quantized more detail and the other side is suppressed. Comparing with the conventional method, we can get the enhanced image quality.

  • PDF

A Study on Modified Spatial Weighted Filter in Mixed Noise Environments (복합잡음 환경에서 변형된 공간 가중치 필터에 관한 연구)

  • Kwon, Se-Ik;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.1
    • /
    • pp.237-243
    • /
    • 2015
  • In recent image processing, active researches have been made along with rapid development in digital times. However, it is know that the image degradation occurs due to various external factors in the processes of image data processing, transmission and storage, and the main reason of image degradation is due to the noise. Typical methods to remove the noise are CWMF(center weighted median filter), A-TMF(alpha-trimmed mean filter) and AWMF(adaptive weighted median filter) and these methods have a little bit lacking noise reduction characteristics in mixed noise environments. Therefore, in order to remove the mixed noise, image restoration filter processing algorithm was suggested in this paper which processes by applying the median value of the mask and space weighted value after noise judgment. And for the objective judgment, it was compared with existing methods and PSNR(peak signal to noise ratio) was used as a judgment standard.

Adaptive Histogram Projection And Detail Enhancement for the Visualization of High Dynamic Range Infrared Images

  • Lee, Dong-Seok;Yang, Hyun-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.11
    • /
    • pp.23-30
    • /
    • 2016
  • In this paper, we propose an adaptive histogram projection technique for dynamic range compression and an efficient detail enhancement method which is enhancing strong edge while reducing noise. First, The high dynamic range image is divided into low-pass component and high-pass component by applying 'guided image filtering'. After applying 'guided filter' to high dynamic range image, second, the low-pass component of the image is compressed into 8-bit with the adaptive histogram projection technique which is using global standard deviation value of whole image. Third, the high-pass component of the image adaptively reduces noise and intensifies the strong edges using standard deviation value in local path of the guided filter. Lastly, the monitor display image is summed up with the compressed low-pass component and the edge-intensified high-pass component. At the end of this paper, the experimental result show that the suggested technique can be applied properly to the IR images of various scenes.

Image Enhancement of Image Intensifying Device in Extremely Low-Light Levels using Multiple Filters and Anisotropic Diffusion (다중필터와 이방성 확산을 이용한 극 저조도 조건에서의 미광증폭장비 영상 개선)

  • Moon, Jin-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.36-41
    • /
    • 2018
  • An image intensifying device is equipment that makes weak objects visible in a dark environment, such as making nighttime bright enough to let objects be visually observed. It is possible to obtain a clear image by amplifying the light in the presence of a certain amount of weak light. However, in an extremely low-light environment, where even moonlight is not present, there is not enough light to amplify anything, and the sharpness of the screen deteriorates. In this paper, a method is proposed to improve image quality by using multiple filters and anisotropic diffusion for output noise of the image-intensifying device in extreme low-light environments. For the experiment, the output of the image-intensifying device was obtained under extremely low-light conditions, and signal processing for improving the image quality was performed. The configuration of the filters for signal processing uses anisotropic diffusion after applying a median filter and a Wiener filter for effective removal of salt-and-pepper noise and Gaussian noise, which constitute the main noise appearing in the image. Experimental results show that the improvement visually enhanced image quality. Both peak signal-to-noise ratio (PSNR) and SSIM, which are quantitative indicators, show improved values.