• 제목/요약/키워드: Image model

검색결과 6,570건 처리시간 0.039초

Exploring Self-image Congruity and Regret for IS Continuance based on the Expectation-Confirmation Model

  • Kang, Young-Sik;Hong, Soong-Eun;Lee, Hee-Seok
    • 한국경영정보학회:학술대회논문집
    • /
    • 한국경영정보학회 2007년도 International Conference
    • /
    • pp.503-508
    • /
    • 2007
  • In order to understand information system post-adoption phenomena, the expectation-confirmation model (ECM) was proposed. Past studies based on the ECM focus on a referent centered on the target IS being studied. The effect of this reference, captured through confirmation, has been strongly shown. However, the saliency of two additional reference effects, captured through self-image congruity and regret, has not been explored. In order to fill this knowledge gap, this paper attempts to develop a research model that extends the ECM by incorporating self-image congruity and regret as well as perceived enjoyment. For this extension, we synthesize the extant literature on continued IS use, self-image congruity, and regret. The analysis results tell us that self-image congruity plays a key role in forming two post-adoption beliefs, perceived usefulness and perceived enjoyment. It is also found that the absolute effect of regret on continuance intention is larger than those of other antecedents identified in IS. Overall, this study preliminarily confirms the saliency of self-image congruity and regret in post-adoption phenomena. Our study results is likely to help the IS community systematically address unexplored effects of self-image congruity and regret.

  • PDF

위성용 카메라 비선형 모델의 잡음 특성 분석과 영상 신호-잡음비(Image SNR) 분포도 계산 (Noise Analysis of Nonlinear Image Sensor Model with Application to SNR Estimation)

  • 명환춘;이상곤
    • 항공우주기술
    • /
    • 제8권1호
    • /
    • pp.58-65
    • /
    • 2009
  • 본 논문은 검출기의 포화과정을 반영한 비선형 모델의 잡음 특성을 분석하고, 그러한 분석결과를 영상 신호-잡음비(Image SNR)의 분포도를 계산하기위하여 적용한다. 특별히, 검출 화소의 비선형성은 잡음분포(PDF)의 비대칭성과 화소 신호-잡음비(Pixel SNR)의 증폭이라는 두 가지 관점에서 분석되며, 제안된 영상 신호-잡음비 분포도를 이용하여 위성의 발사 후에 카메라 이득의 변화나 기타 상황에서도, 궤도상에서 최적의 위성 카메라 운영 변수들(노출시간, 누적횟수)을 얻을 수 있음이 주요한 특징으로 강조된다.

  • PDF

Deep Image Annotation and Classification by Fusing Multi-Modal Semantic Topics

  • Chen, YongHeng;Zhang, Fuquan;Zuo, WanLi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권1호
    • /
    • pp.392-412
    • /
    • 2018
  • Due to the semantic gap problem across different modalities, automatically retrieval from multimedia information still faces a main challenge. It is desirable to provide an effective joint model to bridge the gap and organize the relationships between them. In this work, we develop a deep image annotation and classification by fusing multi-modal semantic topics (DAC_mmst) model, which has the capacity for finding visual and non-visual topics by jointly modeling the image and loosely related text for deep image annotation while simultaneously learning and predicting the class label. More specifically, DAC_mmst depends on a non-parametric Bayesian model for estimating the best number of visual topics that can perfectly explain the image. To evaluate the effectiveness of our proposed algorithm, we collect a real-world dataset to conduct various experiments. The experimental results show our proposed DAC_mmst performs favorably in perplexity, image annotation and classification accuracy, comparing to several state-of-the-art methods.

Application of Deep Learning to Solar Data: 6. Super Resolution of SDO/HMI magnetograms

  • Rahman, Sumiaya;Moon, Yong-Jae;Park, Eunsu;Jeong, Hyewon;Shin, Gyungin;Lim, Daye
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.52.1-52.1
    • /
    • 2019
  • The Helioseismic and Magnetic Imager (HMI) is the instrument of Solar Dynamics Observatory (SDO) to study the magnetic field and oscillation at the solar surface. The HMI image is not enough to analyze very small magnetic features on solar surface since it has a spatial resolution of one arcsec. Super resolution is a technique that enhances the resolution of a low resolution image. In this study, we use a method for enhancing the solar image resolution using a Deep-learning model which generates a high resolution HMI image from a low resolution HMI image (4 by 4 binning). Deep learning networks try to find the hidden equation between low resolution image and high resolution image from given input and the corresponding output image. In this study, we trained a model based on a very deep residual channel attention networks (RCAN) with HMI images in 2014 and test it with HMI images in 2015. We find that the model achieves high quality results in view of both visual and measures: 31.40 peak signal-to-noise ratio(PSNR), Correlation Coefficient (0.96), Root mean square error (RMSE) is 0.004. This result is much better than the conventional bi-cubic interpolation. We will apply this model to full-resolution SDO/HMI and GST magnetograms.

  • PDF

직물 이미지 결함 탐지를 위한 딥러닝 기술 연구: 트랜스포머 기반 이미지 세그멘테이션 모델 실험 (Deep Learning Models for Fabric Image Defect Detection: Experiments with Transformer-based Image Segmentation Models)

  • 이현상;하성호;오세환
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제32권4호
    • /
    • pp.149-162
    • /
    • 2023
  • Purpose In the textile industry, fabric defects significantly impact product quality and consumer satisfaction. This research seeks to enhance defect detection by developing a transformer-based deep learning image segmentation model for learning high-dimensional image features, overcoming the limitations of traditional image classification methods. Design/methodology/approach This study utilizes the ZJU-Leaper dataset to develop a model for detecting defects in fabrics. The ZJU-Leaper dataset includes defects such as presses, stains, warps, and scratches across various fabric patterns. The dataset was built using the defect labeling and image files from ZJU-Leaper, and experiments were conducted with deep learning image segmentation models including Deeplabv3, SegformerB0, SegformerB1, and Dinov2. Findings The experimental results of this study indicate that the SegformerB1 model achieved the highest performance with an mIOU of 83.61% and a Pixel F1 Score of 81.84%. The SegformerB1 model excelled in sensitivity for detecting fabric defect areas compared to other models. Detailed analysis of its inferences showed accurate predictions of diverse defects, such as stains and fine scratches, within intricated fabric designs.

Correlation analysis between rotation parameters and attitude parameters in simulated satellite image

  • Yun, Young-Bo;Park, Jeong-Ho;Yoon, Geun-Won;Park, Jong-Hyun
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.553-558
    • /
    • 2002
  • Physical sensor model in pushbroom satellite images can be made from sensor modeling by rotation parameters and attitude parameters on the satellite track. These parameters are determined by the information obtained from GPS, INS, or star tracker. Provided from satellite image, an auxiliary data error is connected directly with an error of rotation parameters and attitude parameters. This paper analyzed how obtaining satellite images influenced errors of rotation parameters and attitude parameters. furthermore, for detailed analysis, this paper generated simulated satellite image, which was changed variously by rotation parameters and attitude parameters of satellite sensor model. Simulated satellite image is generated by using high-resolution digital aerial image and DEM (Digital Elevation Model) data. Moreover, this paper determined correlation of rotation parameter and attitude parameters through error analysis of simulated satellite image that was generated by various rotation parameters and attitude parameters.

  • PDF

비정적 상관관계를 고려한 공간적응적 잡음제거 알고리즘 (Spatially Adaptive High-Resolution Denoising Based on Nonstationary Correlation Assumption)

  • 김창원;박성철;강문기
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅳ
    • /
    • pp.1711-1714
    • /
    • 2003
  • The noise in an image degrades image quality and deteriorates coding efficiency of compression. Recently, various edge-preserving noise filtering methods based on the nonstationary image model have been proposed to overcome this problem. In most conventional nonstationary image models, however, pixels are assumed to be uncorrelated to each other In order not to increase the computational burden too much. As a result, some detailed information is lost in the filtered results. In this paper, we propose a computationally feasible adaptive noise smoothing algorithm which considers the nonstationary correlation characteristics of images. We assume that an image has a nonstationary mean and can be segmented into subimages which have individually different stationary correlations. Taking advantage of the special structure of the covariance matrix that results from the proposed image model, we derive a computationally efficient FFT-based adaptive linear minimum mean square error filter. The justification for the proposed image model is presented and the effectiveness of the proposed algorithm is demonstrated experimentally.

  • PDF

A Design of the Fuzzy Neural Network Image Recognizer

  • Kim, Dae-Su
    • 한국지능시스템학회논문지
    • /
    • 제2권3호
    • /
    • pp.50-57
    • /
    • 1992
  • Neural networks have become more popular recently and are now being applied to numerous fiedls. One of the major applications of neural networks is image recognition. Various image recognition system have been proposed so far, but there is no definite solution yet. In this paper, we propose a design of Fuzzy Neural Network Image Recognizer(FNNIR). Our model uses a fuzzy neural network model, named SONN[KIM90]. This model returns the information of the number of clusters and cluster and cluster center values for a given image data ste. Unlike the well-kinwn backpropagation technique, we do not need retraining for new data. Our newly designed image recongitionsystem FNNIR that uses fuzzy merger is proposed and experimented for a sample color image.

  • PDF

TIN Based Geometric Correction with GCP

  • Seo, Ji-Hun;Jeong, Soo;Kim, Kyoung-Ok
    • 대한원격탐사학회지
    • /
    • 제19권3호
    • /
    • pp.247-253
    • /
    • 2003
  • The mainly used technique to correct satellite images with geometric distortion is to develop a mathematical relationship between pixels on the image and corresponding points on the ground. Polynomial models with various transformations have been designed for defining the relationship between two coordinate systems. GCP based geometric correction has peformed overall plane to plane mapping. In the overall plane mapping, overall structure of a scene is considered, but local variation is discarded. The Region with highly variant height is rectified with distortion on overall plane mapping. To consider locally variable region in satellite image, TIN-based rectification on a satellite image is proposed in this paper. This paper describes the relationship between GCP distribution and rectification model through experimental result and analysis about each rectification model. We can choose a geometric correction model as the structural characteristic of a satellite image and the acquired GCP distribution.

Infrared and Visible Image Fusion Based on NSCT and Deep Learning

  • Feng, Xin
    • Journal of Information Processing Systems
    • /
    • 제14권6호
    • /
    • pp.1405-1419
    • /
    • 2018
  • An image fusion method is proposed on the basis of depth model segmentation to overcome the shortcomings of noise interference and artifacts caused by infrared and visible image fusion. Firstly, the deep Boltzmann machine is used to perform the priori learning of infrared and visible target and background contour, and the depth segmentation model of the contour is constructed. The Split Bregman iterative algorithm is employed to gain the optimal energy segmentation of infrared and visible image contours. Then, the nonsubsampled contourlet transform (NSCT) transform is taken to decompose the source image, and the corresponding rules are used to integrate the coefficients in the light of the segmented background contour. Finally, the NSCT inverse transform is used to reconstruct the fused image. The simulation results of MATLAB indicates that the proposed algorithm can obtain the fusion result of both target and background contours effectively, with a high contrast and noise suppression in subjective evaluation as well as great merits in objective quantitative indicators.