• Title/Summary/Keyword: Image method

Search Result 17,865, Processing Time 0.037 seconds

Production of Digital Image Map using Aerial Photo and Geospatial Information System (항공사진과 지형공간정보체계를 이용한 수치영상지도 제작연구)

  • Sohn, Duk-Jae
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.5 no.2 s.10
    • /
    • pp.207-220
    • /
    • 1997
  • This study aims to develope the production method of digital image map of high capable utiliy and terrain interpretability using aerial photo and Geospatial Information System. Theory and efficient practical method was studied to generate tile digital image map with low-cost personal computer system using the merging procedure of raster scanned aerial photo and vector topographic map. Determination theory of ground coordinates, digital image processing, production of digital elevation model was reviewed. And some chariteristics of digital image map, image collection method and significant concepts of digital image processing was studied. Also input and output way of image data to generate the digital image nap, production method of orthophoto map using aerial photo through digital differential rectification was studied. As the result, digital image map was produced and analyzed through the above mentioned procedures.

  • PDF

Image Retrieval Using Histogram Refinement Based on Local Color Difference (지역 색차 기반의 히스토그램 정교화에 의한 영상 검색)

  • Kim, Min-KI
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.12
    • /
    • pp.1453-1461
    • /
    • 2015
  • Since digital images and videos are rapidly increasing in the internet with the spread of mobile computers and smartphones, research on image retrieval has gained tremendous momentum. Color, shape, and texture are major features used in image retrieval. Especially, color information has been widely used in image retrieval, because it is robust in translation, rotation, and a small change of camera view. This paper proposes a new method for histogram refinement based on local color difference. Firstly, the proposed method converts a RGB color image into a HSV color image. Secondly, it reduces the size of color space from 2563 to 32. It classifies pixels in the 32-color image into three groups according to the color difference between a central pixel and its neighbors in a 3x3 local region. Finally, it makes a color difference vector(CDV) representing three refined color histograms, then image retrieval is performed by the CDV matching. The experimental results using public image database show that the proposed method has higher retrieval accuracy than other conventional ones. They also show that the proposed method can be effectively applied to search low resolution images such as thumbnail images.

A fast fractal decoding algorithm using averaged-image estimation (평균 영상 추정을 이용한 고속 플랙탈 영상 복원 알고리즘)

  • 문용호;박태희;김재호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.9A
    • /
    • pp.2355-2364
    • /
    • 1998
  • In conventional fractal decoding procedure, the reconstructed image is obtained by a rpredefined number of iterations starting with an arbitrary initial image. Its convergence speed depends on the selection of the initial image. It should be solved to get high speed convergence. In this paper, we theoretically reveal that conventional method is approximately decomposed into the decoding of the DC and AC components. Based on this fact, we proposed a novel fast fractal decoding algorithm made up of two steps. The averaged-image considered as an optimal initial image is estimated in the first step. In the second step, the reconstructe dimag eis genrated from the output image obtained in the first step. From the simulations, it is shown that the output image of the first step approximately converges to the averaged-image with only 15% calculations for one iteration of conventional method. And the proposed method is faster than various decoding mehtods and evenly equal to conventioanl decoding with the averaged-image. In addition, the proposed method can be applied to the compressed data resulted from the various encoding methods because it does not impose any constraints in the encoding procedure to get high decoding speed.

  • PDF

A Fast Algorithm for Fractal Image Coding

  • Kim, Jeong-Il;Kwak, Seung-Uk;Jeong, Keun-Won;Song, In-Keun;Yoo, Choong-Yeol;Lee, Kwang-Bae;Kim, Hyen-Ug
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.521-525
    • /
    • 1998
  • In this paper, we propose a fast algorithm for fractal image coding to shorten long time to take on fractal image encoding. For its performance evaluation, the algorithm compares with other traditional fractal coding methods. In the traditional fractal image coding methods, an original image is contracted by a factor in order to make an image to be matched. Then, the whole area of the contracted image is searched in order to find contractive transformation point of the original image corresponding to the contacted image. It needs a lot of searching time on encoding and remains limitation in the improvement of compression ratio. However, the proposed algorithm not only considerably reduces encoding tin e by using scaling method and limited search area method but also improves compression ratio by using bit-plane. When comparing the proposed algorithm with Jacquin's method, the proposed algorithm provides much shorter encoding time and better compression ratio with a little degradation of the decoded image quality than Jacquin's method.

  • PDF

A Research on the Measurement of Human Factor Algorithm 3D Object (3차원 영상 객체 휴먼팩터 알고리즘 측정에 관한 연구)

  • Choi, Byungkwan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.14 no.2
    • /
    • pp.35-47
    • /
    • 2018
  • The 4th industrial revolution, digital image technology has developed beyond the limit of multimedia industry to advanced IT fusion and composite industry. Particularly, application technology related to HCI element algorithm in 3D image object recognition field is actively developed. 3D image object recognition technology evolved into intelligent image sensing and recognition technology through 3D modeling. In particular, image recognition technology has been actively studied in image processing using object recognition recognition processing, face recognition, object recognition, and 3D object recognition. In this paper, we propose a research method of human factor 3D image recognition technology applying human factor algorithm for 3D object recognition. 1. Methods of 3D object recognition using 3D modeling, image system analysis, design and human cognitive technology analysis 2. We propose a 3D object recognition parameter estimation method using FACS algorithm and optimal object recognition measurement method. In this paper, we propose a method to effectively evaluate psychological research techniques using 3D image objects. We studied the 3D 3D recognition and applied the result to the object recognition element to extract and study the characteristic points of the recognition technology.

Reflectance estimation for infrared and visible image fusion

  • Gu, Yan;Yang, Feng;Zhao, Weijun;Guo, Yiliang;Min, Chaobo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.8
    • /
    • pp.2749-2763
    • /
    • 2021
  • The desirable result of infrared (IR) and visible (VIS) image fusion should have textural details from VIS images and salient targets from IR images. However, detail information in the dark regions of VIS image has low contrast and blurry edges, resulting in performance degradation in image fusion. To resolve the troubles of fuzzy details in dark regions of VIS image fusion, we have proposed a method of reflectance estimation for IR and VIS image fusion. In order to maintain and enhance details in these dark regions, dark region approximation (DRA) is proposed to optimize the Retinex model. With the improved Retinex model based on DRA, quasi-Newton method is adopted to estimate the reflectance of a VIS image. The final fusion outcome is obtained by fusing the DRA-based reflectance of VIS image with IR image. Our method could simultaneously retain the low visibility details in VIS images and the high contrast targets in IR images. Experiment statistic shows that compared to some advanced approaches, the proposed method has superiority on detail preservation and visual quality.

Efficient image-stitching using preprocessing for a super resolution image (전처리를 활용한 고해상도 영상을 위한 효율적인 영상 스티칭)

  • Bae, JoungEun;Yoo, Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.9
    • /
    • pp.1738-1743
    • /
    • 2017
  • This paper presents an efficient image stitching method using preprocessing in order to generate a super resolution image. Two-dimensional (2D) scanners are consistently used in various areas but they have limitations such as paper sizes and materials. To overcome these problem with low-cost, an efficient imaging stitching method is proposed for producing a super resolution panorama image. To scan a very large sized paper using mobile phones, a simple portable cradle which fixes height is employed producing an input image set. To improve matching performance, a preprocessing method is introduced before searching correspondences. Then alpha blending is applied to an input image set to produce a super resolution panorama image. The proposed method is faster and easier than the existing method which is employed by Open CV. Experiment results show that the proposed method is three times faster and performs better than the existing method.

Road Image Enhancement Method for Vision-based Intelligent Vehicle (비전기반 지능형 자동차를 위한 도로 주행 영상 개선 방법)

  • Kim, Seunggyu;Park, Daeyong;Choi, Yeongwoo
    • Korean Journal of Cognitive Science
    • /
    • v.25 no.1
    • /
    • pp.51-71
    • /
    • 2014
  • This paper presents an image enhancement method in real road traffic scenes. The images captured by the camera on the car cannot keep the color constancy as illumination or weather changes. In the real environment, these problems are more worse at back light conditions and at night that make more difficult to the applications of the vision-based intelligent vehicles. Using the existing image enhancement methods without considering the position and intensity of the light source and their geometric relations the image quality can even be deteriorated. Thus, this paper presents a fast and effective method for image enhancement resembling human cognitive system which consists of 1) image preprocessing, 2) color-contrast evaluation, 3) alpha blending of over/under estimated image and preprocessed image. An input image is first preprocessed by gamma correction, and then enhanced by an Automatic Color Enhancement(ACE) method. Finally, the preprocessed image and the ACE image are blended to improve image visibility. The proposed method shows drastically enhanced results visually, and improves the performance in traffic sign detection of the vision based intelligent vehicle applications.

High performance γ-ray imager using dual anti-mask method for the investigation of high-energy nuclear materials

  • Lee, Taewoong;Lee, Wonho
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2371-2376
    • /
    • 2021
  • As the γ-ray energy increases, a reconstructed image becomes noisy and blurred due to the penetration of the γ-ray through the coded mask. Therefore, the thickness of the coded mask was increased for high energy regions, resulting in severely decreased the performance of the detection efficiency due to self-collimation by the mask. In order to overcome the limitation, a modified uniformly redundant array γ-ray imaging system using dual anti-mask method was developed, and its performance was compared and evaluated in high-energy radiation region. In the dual anti-mask method, the two shadow images, including the subtraction of background events, can simultaneously contribute to the reconstructed image. Moreover, the reconstructed images using each shadow image were integrated using a hybrid update maximum likelihood expectation maximization (h-MLEM). Using the quantitative evaluation method, the performance of the dual anti-mask method was compared with the previously developed collimation methods. As the shadow image which was subtracted the background events leads to a higher-quality reconstructed image, the reconstructed image of the dual anti-mask method showed high performance among the three collimation methods. Finally, the quantitative evaluation method proves that the performance of the dual anti-mask method was better than that of the previously reconstruction methods.

Image Retrieval using Fast Wavelet Histogram and Color Information (고속 웨이블렛 히스토그램과 색상정보를 이용한 영상검색)

  • 김주현;이배호
    • Proceedings of the IEEK Conference
    • /
    • 2000.06d
    • /
    • pp.194-197
    • /
    • 2000
  • Wavelet transform used for content-based image retrieval has good performance in texture image. Image features for content-based image retrieval are color, texture, and shape. In this paper, we use color feature extracted from HSI color space known as most similar vision system to human vision system and texture feature extracted from wavelet histogram which has multiresolution property. Proposed method is compared with HSI color histogram method and wavelet histogram method. It is shown better performance.

  • PDF