• Title/Summary/Keyword: Image information measure

Search Result 805, Processing Time 0.031 seconds

3D Measurement Method Based on Point Cloud and Solid Model for Urban SingleTrees (Point cloud와 solid model을 기반으로 한 단일수목 입체적 정량화기법 연구)

  • Park, Haekyung
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_2
    • /
    • pp.1139-1149
    • /
    • 2017
  • Measuring tree's volume is very important input data of various environmental analysis modeling However, It's difficult to use economical and equipment to measure a fragmented small green space in the city. In addition, Trees are sensitive to seasons, so we need new and easier equipment and quantification methods for measuring trees than lidar for high frequency monitoring. In particular, the tree's size in a city affect management costs, ecosystem services, safety, and so need to be managed and informed on the individual tree-based. In this study, we aim to acquire image data with UAV(Unmanned Aerial Vehicle), which can be operated at low cost and frequently, and quickly and easily quantify a single tree using SfM-MVS(Structure from Motion-Multi View Stereo), and we evaluate the impact of reducing number of images on the point density of point clouds generated from SfM-MVS and the quantification of single trees. Also, We used the Watertight model to estimate the volume of a single tree and to shape it into a 3D structure and compare it with the quantification results of 3 different type of 3D models. The results of the analysis show that UAV, SfM-MVS and solid model can quantify and shape a single tree with low cost and high time resolution easily. This study is only for a single tree, Therefore, in order to apply it to a larger scale, it is necessary to follow up research to develop it, such as convergence with various spatial information data, improvement of quantification technique and flight plan for enlarging green space.

Categorizing the Landcover Classes of the Satellite Imagery for the Management of the Nonpoint Source Pollutions (비점오염원 수문유출모형에 적용 가능한 위성영상의 토지피복 분류항목 설정)

  • Seo, Dong-Jo
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.11
    • /
    • pp.465-474
    • /
    • 2009
  • To measure the amount of nonpoint source pollution, some efforts are tried to utilize satellite imagery. But, as the factors for water models do not relate with the landcover categories for satellite imagery, satellite imagery are adapted to roughly classified thematic map or used only for the image interpretation. The purpose of this study is to establish the landcover categories of satellite imagery to relate with the water models. To establish the categories of the landcover for the water models, it was investigated to get main factors of water flow models for the nonpoint source pollution and to review the existing study and the classification system. For this result, it was convinced that the basic unit on the nonpoint source pollution, landcover coefficients of SCS Curve Number, the crop factor of Universal Soil Loss Equation, Manning's roughness coefficients are the useful parameters to extract information from the satellite imagery. After the setup the categories for the landcover classification, it was finally defined from the consultation of the water model specialist. Woopo wetland watershed was selected to the study area because it is a representative wetland in Korea and needs the management system for nonpoint source pollution. There were used Landsat ETM Plus and SPOT-5 satellite imagery to assess the result of the image classification.

Photomosaic Algorithm with Adaptive Tilting and Block Matching (적응적 타일링 및 블록 매칭을 통한 포토 모자이크 알고리즘)

  • Seo, Sung-Jin;Kim, Ki-Wong;Kim, Sun-Myeng;Lee, Hae-Yeoun
    • The KIPS Transactions:PartB
    • /
    • v.19B no.1
    • /
    • pp.1-8
    • /
    • 2012
  • Mosaic is to make a big image by gathering lots of small materials having various colors. With advance of digital imaging techniques, photomosaic techniques using photos are widely used. In this paper, we presents an automatic photomosaic algorithm based on adaptive tiling and block matching. The proposed algorithm is composed of two processes: photo database generation and photomosaic generation. Photo database is a set of photos (or tiles) used for mosaic, where a tile is divided into $4{\times}4$ regions and the average RGB value of each region is the feature of the tile. Photomosaic generation is composed of 4 steps: feature extraction, adaptive tiling, block matching, and intensity adjustment. In feature extraction, the feature of each block is calculated after the image is splitted into the preset size of blocks. In adaptive tiling, the blocks having similar similarities are merged. Then, the blocks are compared with tiles in photo database by comparing euclidean distance as a similarity measure in block matching. Finally, in intensity adjustment, the intensity of the matched tile is replaced as that of the block to increase the similarity between the tile and the block. Also, a tile redundancy minimization scheme of adjacent blocks is applied to enhance the quality of mosaic photos. In comparison with Andrea mosaic software, the proposed algorithm outperforms in quantitative and qualitative analysis.

A preliminary study to determine the order of the latent fingerprint deposition on thermal paper - A short term study - (감열지상 잠재지문의 남겨진 순서결정에 대한 예비적 연구 - 단기연구 -)

  • Lim, Dong-A;Ok, Yun-Seok;Heo, Bo-Reum;Choi, Sung-Woon
    • Analytical Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.279-286
    • /
    • 2017
  • Determination of the order of latent fingerprints deposition on the surface of thermal paper, often found in crime scenes, is related to the study of time course and aging of fingerprints and can provide additional information in criminal investigations. A preliminary study was performed to determine the deposition order of fingerprints left with two different conditions of deposition pressure and time (in seconds) after 1 day intervals for 7 days on thermal paper (receipt and fax thermal paper) using an iodine fuming method. The resultant images of the visualized fingerprints were analyzed with densitometric image analysis to measure the changes in the areas of the ridges, which can be correlated to the deposition order. No significant variation was found with the different types of thermal paper. The average areas of the friction ridges increased gradually or were similar to the values from day 1 for 3 days, and then a continual decrease was shown from day 4 through day 7. The area values from day 6 and day 7 were less than half of those from day 1. Furthermore, the test with overlapped fingerprints showed the possibility of differentiation between fingerprints that are 1-3 and 6-7 days old based on the clarity visible to the naked eye. Additional experiments with the deposition conditions can prove that the current method is valuable for the determining the order of fingerprint deposition on thermal paper.

Generation of Land Surface Temperature Orthophoto and Temperature Accuracy Analysis by Land Covers Based on Thermal Infrared Sensor Mounted on Unmanned Aerial Vehicle (무인항공기에 탑재된 열적외선 센서 기반의 지표면 온도 정사영상 제작 및 피복별 온도 정확도 분석)

  • Park, Jin Hwan;Lee, Ki Rim;Lee, Won Hee;Han, You Kyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.4
    • /
    • pp.263-270
    • /
    • 2018
  • Land surface temperature is known to be an important factor in understanding the interactions of the ground-atmosphere. However, because of the large spatio-temporal variability, regular observation is rarely made. The existing land surface temperature is observed using satellite images, but due to the nature of satellite, it has the limit of long revisit period and low accuracy. In this study, in order to confirm the possibility of replacing land surface temperature observation using satellite imagery, images acquired by TIR (Thermal Infrared) sensor mounted on UAV (Unmanned Aerial Vehicle) are used. The acquired images were transformed from JPEG (Joint Photographic Experts Group) to TIFF (Tagged Image File Format) format and orthophoto was then generated. The DN (Digital Number) value of orthophoto was used to calculate the actual land surface temperature. In order to evaluate the accuracy of the calculated land surface temperature, the land surface temperature was compared with the land surface temperature directly observed with an infrared thermometer at the same time. When comparing the observed land surface temperatures in two ways, the accuracy of all the land covers was below the measure accuracy of the TIR sensor. Therefore, the possibility of replacing the satellite image, which is a conventional land surface temperature observation method, is confirmed by using the TIR sensor mounted on UAV.

Leision Detection in Chest X-ray Images based on Coreset of Patch Feature (패치 특징 코어세트 기반의 흉부 X-Ray 영상에서의 병변 유무 감지)

  • Kim, Hyun-bin;Chun, Jun-Chul
    • Journal of Internet Computing and Services
    • /
    • v.23 no.3
    • /
    • pp.35-45
    • /
    • 2022
  • Even in recent years, treatment of first-aid patients is still often delayed due to a shortage of medical resources in marginalized areas. Research on automating the analysis of medical data to solve the problems of inaccessibility for medical services and shortage of medical personnel is ongoing. Computer vision-based medical inspection automation requires a lot of cost in data collection and labeling for training purposes. These problems stand out in the works of classifying lesion that are rare, or pathological features and pathogenesis that are difficult to clearly define visually. Anomaly detection is attracting as a method that can significantly reduce the cost of data collection by adopting an unsupervised learning strategy. In this paper, we propose methods for detecting abnormal images on chest X-RAY images as follows based on existing anomaly detection techniques. (1) Normalize the brightness range of medical images resampled as optimal resolution. (2) Some feature vectors with high representative power are selected in set of patch features extracted as intermediate-level from lesion-free images. (3) Measure the difference from the feature vectors of lesion-free data selected based on the nearest neighbor search algorithm. The proposed system can simultaneously perform anomaly classification and localization for each image. In this paper, the anomaly detection performance of the proposed system for chest X-RAY images of PA projection is measured and presented by detailed conditions. We demonstrate effect of anomaly detection for medical images by showing 0.705 classification AUROC for random subset extracted from the PadChest dataset. The proposed system can be usefully used to improve the clinical diagnosis workflow of medical institutions, and can effectively support early diagnosis in medically poor area.

A Study on the Design and Implementation of a Thermal Imaging Temperature Screening System for Monitoring the Risk of Infectious Diseases in Enclosed Indoor Spaces (밀폐공간 내 감염병 위험도 모니터링을 위한 열화상 온도 스크리닝 시스템 설계 및 구현에 대한 연구)

  • Jae-Young, Jung;You-Jin, Kim
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.2
    • /
    • pp.85-92
    • /
    • 2023
  • Respiratory infections such as COVID-19 mainly occur within enclosed spaces. The presence or absence of abnormal symptoms of respiratory infectious diseases is judged through initial symptoms such as fever, cough, sneezing and difficulty breathing, and constant monitoring of these early symptoms is required. In this paper, image matching correction was performed for the RGB camera module and the thermal imaging camera module, and the temperature of the thermal imaging camera module for the measurement environment was calibrated using a blackbody. To detection the target recommended by the standard, a deep learning-based object recognition algorithm and the inner canthus recognition model were developed, and the model accuracy was derived by applying a dataset of 100 experimenters. Also, the error according to the measured distance was corrected through the object distance measurement using the Lidar module and the linear regression correction module. To measure the performance of the proposed model, an experimental environment consisting of a motor stage, an infrared thermography temperature screening system and a blackbody was established, and the error accuracy within 0.28℃ was shown as a result of temperature measurement according to a variable distance between 1m and 3.5 m.

Motion Vector Based Overlay Metrology Algorithm for Wafer Alignment (웨이퍼 정렬을 위한 움직임 벡터 기반의 오버레이 계측 알고리즘 )

  • Lee Hyun Chul;Woo Ho Sung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.3
    • /
    • pp.141-148
    • /
    • 2023
  • Accurate overlay metrology is essential to achieve high yields of semiconductor products. Overlay metrology performance is greatly affected by overlay target design and measurement method. Therefore, in order to improve the performance of the overlay target, measurement methods applicable to various targets are required. In this study, we propose a new algorithm that can measure image-based overlay. The proposed measurement algorithm can estimate the sub-pixel position by using a motion vector. The motion vector may estimate the position of the sub-pixel unit by applying a quadratic equation model through polynomial expansion using pixels in the selected region. The measurement method using the motion vector can calculate the stacking error in all directions at once, unlike the existing correlation coefficient-based measurement method that calculates the stacking error on the X-axis and the Y-axis, respectively. Therefore, more accurate overlay measurement is possible by reflecting the relationship between the X-axis and the Y-axis. However, since the amount of computation is increased compared to the existing correlation coefficient-based algorithm, more computation time may be required. The purpose of this study is not to present an algorithm improved over the existing method, but to suggest a direction for a new measurement method. Through the experimental results, it was confirmed that measurement results similar to those of the existing method could be obtained.

A Study on A Biometric Bits Extraction Method Using Subpattern-based PCA and A Helper Data (영역기반 주성분 분석 방법과 보조정보를 이용한 얼굴정보의 비트열 변환 방법)

  • Lee, Hyung-Gu;Jung, Ho-Gi
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.5
    • /
    • pp.183-191
    • /
    • 2010
  • Unique and invariant biometric characteristics have been used for secure user authentication. Storing original biometric data is not acceptable due to privacy and security concerns of biometric technology. In order to enhance the security of the biometric data, the cancelable biometrics was introduced. Using revocable and non-invertible transformation, the cancelable biometrics can provide a way of more secure biometric authentication. In this paper, we present a new cancelable bits extraction method for the facial data. For the feature extraction, the Subpattern-based Principle Component Analysis (PCA) is adopted. The Subpattern-based PCA divides a whole image into a set of partitioned subpatterns and extracts principle components from each subpattern area. The feature extracted by using Subpattern-based PCA is discretized with a helper data based method. The elements of the obtained bits are evaluated and ordered according to a measure based on the fisher criterion. Finally, the most discriminative bits are chosen as the biometric bits string and used for authentication of each identity. Even if the generated bits string is compromised, new bits string can be generated simply by changing the helper data. Because, the helper data utilizes partial information of the feature, the proposed method does not reveal privacy sensitive biometric information of the user. For a security evaluation of the proposed method, a scenario in which the helper is compromised by an adversary is also considered.

Detection of an Object Bottoming at Seabed by the Reflected Signal Modeling (천해에서 해저면 반사파의 모델링을 통한 물체의 탐지)

  • On, Baeksan;Kim, Sunho;Moon, Woosik;Im, Sungbin;Seo, Iksu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.5
    • /
    • pp.55-65
    • /
    • 2016
  • Detecting an object which is located at seabed is an important issue for various areas. This paper presents an approach to detection of an object that is placed at seabed in the shallow water. A conventional scheme is to employ a side-scan sonar to obtain images of a detection area and to use image processing schemes to recognize an object. Since this approach relies on high frequency signals to get clear images, its detection range becomes shorter and the processing time is getting longer. In this paper, we consider an active sonar system that is repeatedly sending a linear frequency modulated signal of 6~20 kHz in the shallow water of 100m depth. The proposed approach is to model consecutively received reflected signals and to measure their modeling error magnitudes which decide the existence of an object placed on seabed depending on relative magnitude with respect to threshold value. The feature of this approach is to only require an assumption that the seabed consists of an homogeneous sediment, and not to require a prior information on the specific properties of the sediment. We verify the proposed approach in terms of detection probability through computer simulation.