• Title/Summary/Keyword: Image indexing and retrieval

Search Result 113, Processing Time 0.026 seconds

Text-based Image Indexing and Retrieval using Formal Concept Analysis

  • Ahmad, Imran Shafiq
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.2 no.3
    • /
    • pp.150-170
    • /
    • 2008
  • In recent years, main focus of research on image retrieval techniques is on content-based image retrieval. Text-based image retrieval schemes, on the other hand, provide semantic support and efficient retrieval of matching images. In this paper, based on Formal Concept Analysis (FCA), we propose a new image indexing and retrieval technique. The proposed scheme uses keywords and textual annotations and provides semantic support with fast retrieval of images. Retrieval efficiency in this scheme is independent of the number of images in the database and depends only on the number of attributes. This scheme provides dynamic support for addition of new images in the database and can be adopted to find images with any number of matching attributes.

Image Retrieval Using Directional Features (방향성 특징을 이용한 이미지 검색)

  • Jung, Ho-Young;Whang, Whan-Kyu
    • Journal of Industrial Technology
    • /
    • v.20 no.B
    • /
    • pp.207-211
    • /
    • 2000
  • For efficient massive image retrieval, an image retrieval requires that several important objectives are satisfied, namely: automated extraction of features, efficient indexing and effective retrieval. In this work, we present a technique for extracting the 4-dimension directional feature. By directional detail, we imply strong directional activity in the horizontal, vertical and diagonal direction present in region of the image texture. This directional information also present smoothness of region. The 4-dimension feature is only indexed in the 4-D space so that complex high-dimensional indexing can be avoided.

  • PDF

An Identification of the Image Retrieval Domain from the Perspective of Library and Information Science with Author Co-citation and Author Bibliographic Coupling Analyses

  • Yoon, JungWon;Chung, EunKyung;Byun, Jihye
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.49 no.4
    • /
    • pp.99-124
    • /
    • 2015
  • As the improvement of digital technologies increases the use of images from various fields, the domain of image retrieval has evolved and become a growing topic of research in the Library and Information Science field. The purpose of this study is to identify the knowledge structure of the image retrieval domain by using the author co-citation analysis and author bibliographic coupling as analytical tools in order to understand the domain's past and present. The data set for this study is 245 articles with 8,031 cited articles in the field of image retrieval from 1998 to 2013, from the Web of Science citation database. According to the results of author co-citation analysis for the past of the image retrieval domain, our findings demonstrate that the intellectual structure of image retrieval in the LIS field consists of predominantly user-oriented approaches, but also includes some areas influenced by the CBIR area. More specifically, the user-oriented approach contains six specific areas which include image needs, information seeking, image needs and search behavior, image indexing and access, indexing of image collection, and web image search. On the other hand, for CBIR approaches, it contains feature-based image indexing, shape-based indexing, and IR & CBIR. The recent trends of image retrieval based on the results from author bibliographic coupling analysis show that the domain is expanding to emerging areas of medical images, multimedia, ontology- and tag-based indexing which thus reflects a new paradigm of information environment.

Content-Based Retrieval System Design over the Internet (인터넷에 기반한 내용기반 검색 시스템 설계)

  • Kim Young Ho;Kang Dae-Seong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.5
    • /
    • pp.471-475
    • /
    • 2005
  • Recently, development of digital technology is occupying a large part of multimedia information like character, voice, image, video, etc. Research about video indexing and retrieval progresses especially in research relative to video. This paper proposes the novel notation in order to retrieve MPEG video in the international standards of moving picture encoding For realizing the retrieval-system, we detect DCT DC coefficient, and then we obtain shot to apply MVC(Mean Value Comparative) notation to image constructed DC coefficient. We choose the key frame for start-frame of a shot, and we have the codebook index generating it using feature of DC image and applying PCA(principal Component Analysis) to the key frame. Also, we realize the retrieval-system through similarity after indexing. We could reduce error detection due to distinguish shot from conventional shot detection algorithm. In the mean time, speed of indexing is faster by PCA due to perform it in the compressed domain, and it has an advantage which is to generate codebook due to use statistical features. Finally, we could realize efficient retrieval-system using MVC and PCA to shot detection and indexing which is important step of retrieval-system, and we using retrieval-system over the internet.

Indexing and Matching Scheme for Content-based Image Retrieval based on Extendible Hash (효과적인 이미지 검색을 위한 연장 해쉬(Extendible hash) 기반 인덱싱 및 검색 기법)

  • Tak, Yoon-Sik;Hwang, Een-Jun
    • Journal of IKEEE
    • /
    • v.14 no.4
    • /
    • pp.339-345
    • /
    • 2010
  • So far, many researches have been done to index high-dimensional feature values for fast content-based image retrieval. Still, many existing indexing schemes are suffering from performance degradation due to the curse of dimensionality problem. As an alternative, heuristic algorithms have been proposed to calculate the result with 'high probability' at the cost of accuracy. In this paper, we propose a new extendible hash-based indexing scheme for high-dimensional feature values. Our indexing scheme provides several advantages compared to the traditional high-dimensional index structures in terms of search performance and accuracy preservation. Through extensive experiments, we show that our proposed indexing scheme achieves outstanding performance.

Using Radon Transform for Image Retrieval (영상 검색을 위한 Radon 변형의 이용)

  • Seo, Jeong-Man
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.6
    • /
    • pp.65-71
    • /
    • 2009
  • The basic features in the indexing and retrieval of the image is used color, shape, and texture in traditional image retrieval method. We do not use these features and offers a new way. For content-based video indexing and retrieval, visual features used to measure the similarity of the geometric method is presented. This method is called the Radon transform. Without separation, this method is calculated based on the geometric distribution of image. In the experiment has a very good search results.

Color Image Query Using Hierachical Search by Region of Interest with Color Indexing

  • Sombutkaew, Rattikorn;Chitsobhuk, Orachat
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.810-813
    • /
    • 2004
  • Indexing and Retrieving images from large and varied collections using image content as a key is a challenging and important problem in computer vision application. In this paper, a color Content-based Image Retrieval (CBIR) system using hierarchical Region of Interest (ROI) query and indexing is presented. During indexing process, First, The ROIs on every image in the image database are extracted using a region-based image segmentation technique, The JSEG approach is selected to handle this problem in order to create color-texture regions. Then, Color features in form of histogram and correlogram are then extracted from each segmented regions. Finally, The features are stored in the database as the key to retrieve the relevant images. As in the retrieval system, users are allowed to select ROI directly over the sample or user's submission image and the query process then focuses on the content of the selected ROI in order to find those images containing similar regions from the database. The hierarchical region-of-interest query is performed to retrieve the similar images. Two-level search is exploited in this paper. In the first level, the most important regions, usually the large regions at the center of user's query, are used to retrieve images having similar regions using static search. This ensures that we can retrieve all the images having the most important regions. In the second level, all the remaining regions in user's query are used to search from all the retrieved images obtained from the first level. The experimental results using the indexing technique show good retrieval performance over a variety of image collections, also great reduction in the amount of searching time.

  • PDF

A Systematic Review on Concept-based Image Retrieval Research (체계적 분석 기법을 이용한 의미기반 이미지검색 분야 고찰에 관한 연구)

  • Chung, EunKyung
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.25 no.4
    • /
    • pp.313-332
    • /
    • 2014
  • With the increased creation, distribution, and use of image in context of the development of digital technologies and internet, research endeavors have accumulated drastically. As two dominant aspects of image retrieval have been considered content-based and concept-based image retrieval, concept-based image retrieval has been focused in the field of Library and Information Science. This study aims to systematically review the accumulated research of image retrieval from the perspective of LIS field. In order to achieve the purpose of this study, two data sets were prepared: a total of 282 image retrieval research papers from Web of Science, and a total of 35 image retrieval research from DBpia in Kore for comparison. For data analysis, systematic review methodology was utilized with bibliographic analysis of individual research papers in the data sets. The findings of this study demonstrated that two sub-areas, image indexing and description and image needs and image behavior, were dominant. Among these sub-areas, the results indicated that there were emerging areas such as collective indexing, image retrieval in terms of multi-language and multi-culture environments, and affective indexing and use. For the user-centered image retrieval research, college and graduate students were found prominent user groups for research while specific user groups such as medical/health related users, artists, and museum users were found considerably. With the comparison with the distribution of sub-areas of image retrieval research in Korea, considerable similarities were found. The findings of this study expect to guide research directions and agenda for future.

A Study on Content-based Image Information Retrieval Technique (내용기반 영상정보 검색기술에 관한 이론적 고찰)

  • 노진구
    • Journal of Korean Library and Information Science Society
    • /
    • v.31 no.1
    • /
    • pp.229-258
    • /
    • 2000
  • The growth of digital image an video archives is increasing the need for tools that efficiently search through large amount of visual dta. Retrieval of visual data is important issue in multimedia database. We are using contented-based visual data retrieval method for efficient retrieval of visual data. In this paper, we introduced fundamental techniques using characteristic values of image data and indexing techniques required for content-based visual retrieval. In addition we introduced content-based visual retrieval system for use of digital library.

  • PDF

A New Three-dimensional Integrated Multi-index Method for CBIR System

  • Zhang, Mingzhu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.3
    • /
    • pp.993-1014
    • /
    • 2021
  • This paper proposes a new image retrieval method called the 3D integrated multi-index to fuse SIFT (Scale Invariant Feature Transform) visual words with other features at the indexing level. The advantage of the 3D integrated multi-index is that it can produce finer subdivisions in the search space. Compared with the inverted indices of medium-sized codebook, the proposed method increases time slightly in preprocessing and querying. Particularly, the SIFT, contour and colour features are fused into the integrated multi-index, and the joint cooperation of complementary features significantly reduces the impact of false positive matches, so that effective image retrieval can be achieved. Extensive experiments on five benchmark datasets show that the 3D integrated multi-index significantly improves the retrieval accuracy. While compared with other methods, it requires an acceptable memory usage and query time. Importantly, we show that the 3D integrated multi-index is well complementary to many prior techniques, which make our method compared favorably with the state-of-the-arts.