• Title/Summary/Keyword: Image identification

Search Result 984, Processing Time 0.025 seconds

Multi-type object detection-based de-identification technique for personal information protection (개인정보보호를 위한 다중 유형 객체 탐지 기반 비식별화 기법)

  • Ye-Seul Kil;Hyo-Jin Lee;Jung-Hwa Ryu;Il-Gu Lee
    • Convergence Security Journal
    • /
    • v.22 no.5
    • /
    • pp.11-20
    • /
    • 2022
  • As the Internet and web technology develop around mobile devices, image data contains various types of sensitive information such as people, text, and space. In addition to these characteristics, as the use of SNS increases, the amount of damage caused by exposure and abuse of personal information online is increasing. However, research on de-identification technology based on multi-type object detection for personal information protection is insufficient. Therefore, this paper proposes an artificial intelligence model that detects and de-identifies multiple types of objects using existing single-type object detection models in parallel. Through cutmix, an image in which person and text objects exist together are created and composed of training data, and detection and de-identification of objects with different characteristics of person and text was performed. The proposed model achieves a precision of 0.724 and mAP@.5 of 0.745 when two objects are present at the same time. In addition, after de-identification, mAP@.5 was 0.224 for all objects, showing a decrease of 0.4 or more.

The Effect of Korean Company Image on the Chinese Consumers' Evaluation of Korean products and Behavioral Responses -In terms of Beijing region and Samsung/Nongshim product- (한국기업 이미지가 중국 소비자들의 한국제품 평가 및 행위적 반응에 미치는 영향 -북경지역과 삼성/농심제품을 중심으로-)

  • Yoon, Seong-Hwan
    • International Area Studies Review
    • /
    • v.13 no.1
    • /
    • pp.189-217
    • /
    • 2009
  • This study is to learn if and how company-consumer identification in regard of Chinese consumers influences the consumers' behavioral responses with their evaluation on Korean products. To be learned also is differential influences on company-consumer identification generated by two different factors of corporate image, which are corporate ability and corporate social responsibility, through Structural Equation Modeling. The results obtained by actual analysis are as follows. First, both corporate ability and corporate social responsibility turn out to be positively influential on company-consumer identification. Second, the company-consumer identification as to the Korean companies displayed by Chinese consumers induces positive influences on Korean products, which in turn induces positive influences on Chinese consumers' behavioral responses. These results suggest that in the future the Korean companies already settled in China not only need to enhance corporate ability but also have to give efforts on corporate social responsibility in order to improve their continuous and long-term relationship with Chinese consumers.

Video Camera Model Identification System Using Deep Learning (딥 러닝을 이용한 비디오 카메라 모델 판별 시스템)

  • Kim, Dong-Hyun;Lee, Soo-Hyeon;Lee, Hae-Yeoun
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.8
    • /
    • pp.1-9
    • /
    • 2019
  • With the development of imaging information communication technology in modern society, imaging acquisition and mass production technology have developed rapidly. However, crime rates using these technology are increased and forensic studies are conducted to prevent it. Identification techniques for image acquisition devices are studied a lot, but the field is limited to images. In this paper, camera model identification technique for video, not image is proposed. We analyzed video frames using the trained model with images. Through training and analysis by considering the frame characteristics of video, we showed the superiority of the model using the P frame. Then, we presented a video camera model identification system by applying a majority-based decision algorithm. In the experiment using 5 video camera models, we obtained maximum 96.18% accuracy for each frame identification and the proposed video camera model identification system achieved 100% identification rate for each camera model.

Automation of Bio-Industrial Process Via Tele-Task Command(I) -identification and 3D coordinate extraction of object- (원격작업 지시를 이용한 생물산업공정의 생력화 (I) -대상체 인식 및 3차원 좌표 추출-)

  • Kim, S. C.;Choi, D. Y.;Hwang, H.
    • Journal of Biosystems Engineering
    • /
    • v.26 no.1
    • /
    • pp.21-28
    • /
    • 2001
  • Major deficiencies of current automation scheme including various robots for bioproduction include the lack of task adaptability and real time processing, low job performance for diverse tasks, and the lack of robustness of take results, high system cost, failure of the credit from the operator, and so on. This paper proposed a scheme that could solve the current limitation of task abilities of conventional computer controlled automatic system. The proposed scheme is the man-machine hybrid automation via tele-operation which can handle various bioproduction processes. And it was classified into two categories. One category was the efficient task sharing between operator and CCM(computer controlled machine). The other was the efficient interface between operator and CCM. To realize the proposed concept, task of the object identification and extraction of 3D coordinate of an object was selected. 3D coordinate information was obtained from camera calibration using camera as a measurement device. Two stereo images were obtained by moving a camera certain distance in horizontal direction normal to focal axis and by acquiring two images at different locations. Transformation matrix for camera calibration was obtained via least square error approach using specified 6 known pairs of data points in 2D image and 3D world space. 3D world coordinate was obtained from two sets of image pixel coordinates of both camera images with calibrated transformation matrix. As an interface system between operator and CCM, a touch pad screen mounted on the monitor and remotely captured imaging system were used. Object indication was done by the operator’s finger touch to the captured image using the touch pad screen. A certain size of local image processing area was specified after the touch was made. And image processing was performed with the specified local area to extract desired features of the object. An MS Windows based interface software was developed using Visual C++6.0. The software was developed with four modules such as remote image acquisiton module, task command module, local image processing module and 3D coordinate extraction module. Proposed scheme shoed the feasibility of real time processing, robust and precise object identification, and adaptability of various job and environments though selected sample tasks.

  • PDF

A Identification of Tire Moldnumber using 3 Dimension Data (3차원 데이터를 이용한 타이어 몰드번호 추출 및 인식)

  • Lee, Ki Seong;Jeong, Tae Won
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.10
    • /
    • pp.595-603
    • /
    • 2005
  • This Paper proposes the tire mold number identification method which reads the letters on a tire surface with 3D. It is very difficult to separate the letters from the background of an image since the letters on a tire surface is an embossed data. There was many studies to read the letters on a tire surface for the factory automation, however, it was very difficult to separate the letters from the background of an image since the letters on a tire surface is embossed black characters on the black ground. In this study, we first developed the method to find the location of tire mold number, which is used to classify the tire size, from the embossed letters on a tire surface using 3-dimensional laser profile camera which is not affected by the lighting condition, then developed the method to separate the mold number from that location. As a result, we were able to contribute to automate the tire size classification which has been manually performed by operators previously.

Object Color Identification Embedded System Realization for Uninhabited Stock Management (무인물류관리시스템을 위한 물체컬러식별 임베디드시스템 구현)

  • Lar, Ki-Kong;Ryu, Kwang-Ryol
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.289-292
    • /
    • 2007
  • An object color identification and classification embedded system realization for uninhabited stock management is presented in this paper. The embedded system is realized by using ultrasonic sensor to extract the object and distance, and detecting binary image from USB CCD camera. The algorithm is identified by comparing the reference pattern with the color pattern of input image, and move to the settled rack at the store. The experimental result leads to use the uninhibited stock management with practice as a robot.

  • PDF

Contactless Palmprint Identification Using the Pretrained VGGNet Model (사전 학습된 VGGNet 모델을 이용한 비접촉 장문 인식)

  • Kim, Min-Ki
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.12
    • /
    • pp.1439-1447
    • /
    • 2018
  • Palm image acquisition without contact has advantages in user convenience and hygienic issues, but such images generally display more image variations than those acquired employing a contact plate or pegs. Therefore, it is necessary to develop a palmprint identification method which is robust to affine variations. This study proposes a deep learning approach which can effectively identify contactless palmprints. In general, it is very difficult to collect enough volume of palmprint images for training a deep convolutional neural network(DCNN). So we adopted an approach to use a pretrained DCNN. We designed two new DCNNs based on the VGGNet. One combines the VGGNet with SVM. The other add a shallow network on the middle-level of the VGGNet. The experimental results with two public palmprint databases show that the proposed method performs well not only contact-based palmprints but also contactless palmprints.

The study for improve a method of Marker auto- identification (마커 자동 인식 향상 방법에 관한 연구)

  • Lee, Hyun-Seob
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.1
    • /
    • pp.23-38
    • /
    • 2003
  • The purpose of this study is to develop an improved marker auto-identification algorithm for reduce of data processing time through improve the efficiency of noise elimination and marker separation. The maker auto-identification algorithm was programming named KUMAS used Delphi language. For the study, various experiments were conducted for the verification of KUMAS. and compared two systems of established with the KUMAS. Four different motions - cycling, gait, rotation, and pendulum -, were selected and tested. Motions were filmed 30Hz frames rate per second. ${\chi}^2$ used for statistical analysis. Significant level were ${\alpha}=.05$. The test results were as follow. 1. Increased the success ratio of marker auto-identification. 2. The efficiency of marker auto-identification was remarkably improved through marker separation, noise elimination. 3. The marker auto-identification ability was improved in 2D-image plane include the 3D motion. 4. Significant different were found between KUMAS and B-SYS(established system) with non-input the artificial noise frames, input the artificial noise frames and total frames.

Identification via Retinal Vessels Combining LBP and HOG

  • Ali Noori;Esmaeil Kheirkhah
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.3
    • /
    • pp.187-192
    • /
    • 2023
  • With development of information technology and necessity for high security, using different identification methods has become very important. Each biometric feature has its own advantages and disadvantages and choosing each of them depends on our usage. Retinal scanning is a bio scale method for identification. The retina is composed of vessels and optical disk. The vessels distribution pattern is one the remarkable retinal identification methods. In this paper, a new approach is presented for identification via retinal images using LBP and hog methods. In the proposed method, it will be tried to separate the retinal vessels accurately via machine vision techniques which will have good sustainability in rotation and size change. HOG-based or LBP-based methods or their combination can be used for separation and also HSV color space can be used too. Having extracted the features, the similarity criteria can be used for identification. The implementation of proposed method and its comparison with one of the newly-presented methods in this area shows better performance of the proposed method.

Extraction of Iris Codes for Personal Identification Using an Iris Image (홍채를 이용한 생체인식 코드 추출)

  • Yang, Woo Suk
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.6
    • /
    • pp.1-7
    • /
    • 2008
  • In this paper, we introduce a new technology to extract the unique features from an iris image, which uses scale-space filtering. Resulting iris code can be used to develop a system for rapid and automatic human identification with high reliability and confidence levels. First, an iris part is separated from the whole image and the radius and center of the iris are evaluated. Next, the regions that have a high possibility of being noise are discriminated and the features presented in the highly detailed pattern are then extracted. In order to conserve the original signal while minimizing the effect of noise, scale-space filtering is applied. Experiments are performed using a set of 272 iris images taken from 18 persons. Test results show that the iris feature patterns of different persons are clearly discriminated from those of the same person.

  • PDF