• Title/Summary/Keyword: Image force

Search Result 476, Processing Time 0.028 seconds

A Variational Framework for Single Image Dehazing Based on Restoration

  • Nan, Dong;Bi, Du-Yan;He, Lin-Yuan;Ma, Shi-Ping;Fan, Zun-Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1182-1194
    • /
    • 2016
  • The single image dehazing algorithm in existence can satisfy the demand only for improving either the effectiveness or efficiency. In order to solve the problem, a novel variational framework for single image dehazing based on restoration is proposed. Firstly, the initial atmospheric scattering model is transformed to meet the kimmel's Retinex variational model. Then, the green light component of image is considered as an input of the variational framework, which is generated by the sensitivity of green wavelength. Finally, the atmospheric transmission map is achieved by multi-resolution pyramid reduction to improve the visual effect of the results. Experimental results demonstrate that the proposed method can remove haze effectively with less memory consumption.

Design of Ball Bearing Type OIS Actuator for Mobile Camera Module (모바일 카메라 모듈용 볼베어링 방식 OIS 액추에이터 설계)

  • Song, Myeong-Gyu;Son, Dong-Hun;Park, No-Cheol;Park, Kyoung-Su;Park, Young-Pil;Lim, Soo-Cheol
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.4
    • /
    • pp.361-372
    • /
    • 2010
  • Optical image stabilization is a technique to compensate the image blurring caused by some vibrations of camera at the exposure time. Pitching and yawing of camera are sensitive to the image quality so they are usually compensated by optical image stabilization. Corresponding pitching and yawing of a camera, a lens or the image sensor is translated in two-axis direction and then the optical path of camera is adjusted. In this paper, two-axis OIS actuator for mobile camera module is suggested and designed. The actuator is a voice-coil actuator that uses the electromagnetic force of voice-coil to make compensation motions. And ball bearing is used to reduce friction force. Magnetic attractive force between magnets and yokes acts as a preload and magnet springs. Prototype actuator is fabricated to measure the friction force and to verify the feasibility of the OIS actuator with ball bearing. At last, the actuator is improved in consideration of driving force and friction force. Design of experiments is used for designing the actuator.

Image Analysis for the Simultaneous Measurement of Underwater Flow Velocity and Direction (수중 유속 및 유향의 동시 측정을 위한 이미지 분석 기술에 관한 연구)

  • Dongmin Seo;Sangwoo Oh;Sung-Hoon Byun
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.307-312
    • /
    • 2023
  • To measure the flow velocity and direction in the near field of an unmanned underwater vehicle, an optical measurement unit containing an image sensor and a phosphor-integrated pillar that mimics the neuromasts of a fish was constructed. To analyze pillar movement, which changes with fluid flow, fluorescence image analysis was conducted. To analyze the flow velocity, mean force analysis, which could determine the relationship between the light intensity of a fluorescence image and an external force, and length-force analysis, which could determine the distance between the center points of two fluorescence images, were employed. Additionally, angle analysis that can determine the angles at which pixels of a digital image change was selected to analyze the direction of fluid flow. The flow velocity analysis results showed a high correlation of 0.977 between the external force and the light intensity of the fluorescence image, and in the case of direction analysis, omnidirectional movement could be analyzed. Through this study, we confirmed the effectiveness of optical flow sensors equipped with phosphor-integrated pillars.

Development of a Measurement System for the Surface Shape of Micro-parts by Using Atomic Force Microscope (원자간력 현미경을 이용한 초소형 마이크로 부품 표면 형상 측정 시스템 개발)

  • Hong Seong-Wook;Ko Myung-Jun;Shin Young-Hyun;Lee Deug-Woo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.6
    • /
    • pp.22-30
    • /
    • 2005
  • This paper proposes a measurement method for the surface shape of micro-parts by using an atomic force microscope(AFM). To this end, two techniques are presented: First, the measurement range is expanded by using an image matching method based on correlation coefficients. To account for the inaccuracy of the coarse stage implemented in AFM, the image matching technique is applied to two neighboring images intentionally overlapped with each other. Second, a method to measure the shape of relatively large specimen is proposed that utilizes the inherent trigger mechanism due to the atomic force. The proposed methods are proved effective through a series of experiments.

Haptic Interaction with Objects Displayed in a Picture based on Surface Normal Estimation (사진 속 피사체의 법선 벡터 예측에 기반한 햅틱 상호 작용)

  • Kim, Seung-Chan;Kwon, Dong-Soo
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.3
    • /
    • pp.179-185
    • /
    • 2013
  • In this paper we propose a haptic interaction system that physically represents the underlying geometry of objects displayed in a 2D picture, i.e., a digital image. To obtain the object's geometry displayed in the picture, we estimate the physical transformation between the object plane and the image plane based on homographic information. We then calculate the rotated surface normal vector of the object's face and place it on the corresponding part in the 2D image. The purpose of this setup is to create a force that can be rendered along with the image without distorting the visual information. We evaluated the proposed haptic rendering system using a set of pictures of objects with different orientations. The experimental results show that the participants reliably identified the geometric configuration by touching the object in the picture. We conclude this paper with a set of applications.

Development of a measurement system for the surface of micro-parts (초소형 마이크로 부품 표면 측정 시스템 개발)

  • Hong Seong-Wook;Ko Myung-Jun;Shin Young-Hyun;Lee Deug-Woo
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.413-418
    • /
    • 2005
  • This paper proposes a measurement method for the surface of micro-parts by using AFM(Atomic Force Microscope). To this end, two techniques are presented to extend the capacity of AFM. First, the measurement range is extended by using an image matching method based on correlation coefficients. To account for the inaccuracy of the coarse stage implemented in AFM's, the image matching technique is applied to two neighboring images intentionally overlapped with each other. Second, a method to measure the shape of relatively large specimen is presented by using the inherent trigger mechanism due to the atomic force. The proposed method is proved effective through a series of experiments.

  • PDF

Real-Time Haptic Rendering of Slowly Deformable Bodies Based on Two Dimensional Visual Information for Telemanipulation (원격조작을 위한 2차원 영상정보에 기반한 저속 변형체의 실시간 햅틱 렌더링)

  • Kim, Jung-Sik;Kim, Young-Jin;Kim, Jung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.8
    • /
    • pp.855-861
    • /
    • 2007
  • Haptic rendering is a process providing force feedback during interactions between a user and a virtual object. This paper presents a real-time haptic rendering technique for deformable objects based on visual information of intervention between a tool and a real object in a remote place. A user can feel the artificial reaction force through a haptic device in real-time when a slave system exerts manipulation tasks on a deformable object. The models of the deformable object and the manipulator are created from the captured image obtained with a CCD camera and the recognition of objects is achieved using image processing techniques. The force at a rate of 1 kHz for stable haptic interaction is deduced using extrapolation of forces at a low update rate. The rendering algorithm developed was tested and validated on a test platform consisting of a one-dimensional indentation device and an off-the shelf force feedback device. This software system can be used in a cellular manipulation system providing artificial force feedback to enhance a success rate of operations.

Precision measurement of a laser micro-processing surface using a hybrid type of AFM/SCM (하이브리드형 AFM/SCM을 이용한 레이저 미세 가공 표면 측정)

  • Kim, Jong-Bae;Kim, Kyeong-Ho;Bae, Han-Sung;Nam, Gi-Jung;Lee, Dae-Chul;Seo, Woon-Hak
    • Proceedings of the Korean Society of Laser Processing Conference
    • /
    • 2006.11a
    • /
    • pp.123-127
    • /
    • 2006
  • Hybrid type microscope with a Scanning Confocal Microscope (SCM) and a shear-force Atomic Force Microscope (AFM) is suggested and preliminarily studied. A image of $120{\times}120{\mu}m^2$ is obtained within 1 second by SCM because scan speed of a X-axis and Y-axis are 1kHz and 1Hz, respectively. Shear-force AFM is able to correctly measure the hight and width of sample with a resolution 8nm. However, the scan speed is slow and it is difficult to distinguish a surface composed of different kinds of materials. We have carried out the measurement of total image of a sample by SCM and an exact analysis of each image by shear-force AFM.

  • PDF

Improved algorithm for measurement area expansion of atomic force microscope using Image pyramid method (영상 피라미드법을 이용한 원자간력 현미경의 측정면적 확대 알고리즘 개선)

  • Ko M.J.;Seo Y.K.;Hong S.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.483-484
    • /
    • 2006
  • This paper introduces an improved surface matching algorithm that can be used to reconstruct the surface topography of an object that is scanned from multiple overlapping regions by an AFM. The essence of the image matching technique is stitching two neighboring images intentionally overlapped with each other. To enhance the computational efficiency, this paper introduces a pyramid matching algorithm which makes use of reduced images for primary images. The results show that the proposed image pyramid matching algorithm is useful fer enhancing the computational efficiency.

  • PDF

Theoretical Study of Scanning Probe Microscope Images of VTe2

  • Park, Sung-Soo;Lee, Jee-Young;Lee, Wang-Ro;Lee, Kee-Hag
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.1
    • /
    • pp.81-84
    • /
    • 2007
  • Ab initio periodic Hartree-Fock calculations with the full potential and minimum basis set are applied to interpretation of scanning tunneling microscope (STM) and atomic force microscope (AFM) images on 1TVTe2. Our results show that the simulated STM image shows asymmetry while the simulated AFM image shows the circular electron densities at the bright spots without asymmetry of electron density to agree with the experimental AFM image. The bright spots of both the STM and AFM images of VTe2 are associated with the surface Te atoms, while the patterns of bright spots of STM and AFM images are different.