• Title/Summary/Keyword: Image features

Search Result 3,394, Processing Time 0.03 seconds

An Evaluation and Combination of Noise Reduction Filtering and Edge Detection Filtering for the Feature Element Selection in Stereo Matching (스테레오 정합 특징 요소 선택을 위한 잡음 감소 필터링과 에지 검출 필터링의 성능 평가와 결합)

  • Moon, Chang-Gi;Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.4
    • /
    • pp.273-285
    • /
    • 2007
  • Most stereo matching methods use intensity values in small image patches to measure the correspondence between two points. If the noisy pixels are used in computing the corresponding point, the matching performance becomes low. For this reason, the noise plays a critical role in determining the matching performance. In this paper, we propose a method for combining intensity and edge filters robust to the noise in order to improve the performance of stereo matching using high resolution satellite imagery. We used intensity filters such as Mean, Median, Midpoint and Gaussian filter and edge filters such as Gradient, Roberts, Prewitt, Sobel and Laplacian filter. To evaluate the performance of intensity and edge filters, experiments were carried out on both synthetic images and satellite images with uniform or gaussian noise. Then each filter was ranked based on its performance. Among the intensity and edge filters, Median and Sobel filter showed best performance while Midpoint and Laplacian filter showed worst result. We used Ikonos satellite stereo imagery in the experiments and the matching method using Median and Sobel filter showed better matching results than other filter combinations.

MRF-based Iterative Class-Modification in Boundary (MRF 기반 반복적 경계지역내 분류수정)

  • 이상훈
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.2
    • /
    • pp.139-152
    • /
    • 2004
  • This paper proposes to improve the results of image classification with spatial region growing segmentation by using an MRF-based classifier. The proposed approach is to re-classify the pixels in the boundary area, which have high probability of having classification error. The MRF-based classifier performs iteratively classification using the class parameters estimated from the region growing segmentation scheme. The proposed method has been evaluated using simulated data, and the experiment shows that it improve the classification results. But, conventional MRF-based techniques may yield incorrect results of classification for remotely-sensed images acquired over the ground area where has complicated types of land-use. A multistage MRF-based iterative class-modification in boundary is proposed to alleviate difficulty in classifying intricate land-cover. It has applied to remotely-sensed images collected on the Korean peninsula. The results show that the multistage scheme can produce a spatially smooth class-map with a more distinctive configuration of the classes and also preserve detailed features in the map.

A Method of DTM Generation from KOMPSAT-3A Stereo Images using Low-resolution Terrain Data (저해상도 지형 자료를 활용한 KOMPSAT-3A 스테레오 영상 기반의 DTM 생성 방법)

  • Ahn, Heeran;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_1
    • /
    • pp.715-726
    • /
    • 2019
  • With the increasing prevalence of high-resolution satellite images, the need for technology to generate accurate 3D information from the satellite images is emphasized. In order to create a digital terrain model (DTM) that is widely used in applications such as change detection and object extraction, it is necessary to extract trees, buildings, etc. that exist in the digital surface model (DSM) and estimate the height of the ground. This paper presents a method for automatically generating DTM from DSM extracted from KOMPSAT-3A stereo images. The technique was developed to detect the non-ground area and estimate the height value of the ground by using the previously constructed low-resolution topographic data. The average vertical accuracy of DTMs generated in the four experimental sites with various topographical characteristics, such as mountainous terrain, densely built area, flat topography, and complex terrain was about 5.8 meters. The proposed technique would be useful to produce high-quality DTMs that represent precise features of the bare-earth's surface.

PIV measurement and numerical investigation on flow characteristics of simulated fast reactor fuel subassembly

  • Zhang, Cheng;Ju, Haoran;Zhang, Dalin;Wu, Shuijin;Xu, Yijun;Wu, Yingwei;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.897-907
    • /
    • 2020
  • The flow characteristics of reactor fuel assembly always intrigue the designers and the experimentalists among the myriad phenomena that occur simultaneously in a nuclear core. In this work, the visual experimental method has been developed on the basis of refraction index matching (RIM) and particle image velocimetry (PIV) techniques to investigate the detailed flow characteristics in China fast reactor fuel subassembly. A 7-rod bundle of simulated fuel subassembly was fabricated for fine examination of flow characteristics in different subchannels. The experiments were performed at condition of Re=6500 (axial bulk velocity 1.6 m/s) and the fluid medium was maintained at 30℃ and 1.0 bar during operation. As for results, axial and lateral flow features were observed. It is shown that the spiral wire has an inhibitory effect on axial flow and significant intensity of lateral flow mixing effect is induced by the wire. The root mean square (RMS) of lateral velocity fluctuation was acquired after data processing, which indicates the strong turbulence characteristics in different flow subchannels.

A Study on Machine Learning Algorithm Suitable for Automatic Crack Detection in Wall-Climbing Robot (벽면 이동로봇의 자동 균열검출에 적합한 기계학습 알고리즘에 관한 연구)

  • Park, Jae-Min;Kim, Hyun-Seop;Shin, Dong-Ho;Park, Myeong-Suk;Kim, Sang-Hoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.11
    • /
    • pp.449-456
    • /
    • 2019
  • This paper is a study on the construction of a wall-climbing mobile robot using vacuum suction and wheel-type movement, and a comparison of the performance of an automatic wall crack detection algorithm based on machine learning that is suitable for such an embedded environment. In the embedded system environment, we compared performance by applying recently developed learning methods such as YOLO for object learning, and compared performance with existing edge detection algorithms. Finally, in this study, we selected the optimal machine learning method suitable for the embedded environment and good for extracting the crack features, and compared performance with the existing methods and presented its superiority. In addition, intelligent problem - solving function that transmits the image and location information of the detected crack to the manager device is constructed.

Face Recognition Using Automatic Face Enrollment and Update for Access Control in Apartment Building Entrance (아파트 공동현관 출입 통제를 위한 자동 얼굴 등록 및 갱신 기반 얼굴인식)

  • Lee, Seung Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.9
    • /
    • pp.1152-1157
    • /
    • 2021
  • This paper proposes a face recognition method for access control of apartment building. Different from most existing face recognition methods, the proposed one does not require any manual process for face enrollment. When a person is exiting through the main entrance door, his/her face data (i.e., face image and face feature) are automatically extracted from the captured video and registered in the database. When the person needs to enter the building again, the face data are extracted and the corresponding face feature is compared with the face features registered in the database. If a matching person exists, the entrance door opens and his/her access is allowed. The face data of the matching person are immediately deleted and the database has the latest face data of outgoing person. Thus, a higher recognition accuracy could be expected. To verify the feasibility of the proposed method, Python based face recognition has been implemented and the cloud service provided by a web portal.

Expanded Object Localization Learning Data Generation Using CAM and Selective Search and Its Retraining to Improve WSOL Performance (CAM과 Selective Search를 이용한 확장된 객체 지역화 학습데이터 생성 및 이의 재학습을 통한 WSOL 성능 개선)

  • Go, Sooyeon;Choi, Yeongwoo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.9
    • /
    • pp.349-358
    • /
    • 2021
  • Recently, a method of finding the attention area or localization area for an object of an image using CAM (Class Activation Map)[1] has been variously carried out as a study of WSOL (Weakly Supervised Object Localization). The attention area extraction from the object heat map using CAM has a disadvantage in that it cannot find the entire area of the object by focusing mainly on the part where the features are most concentrated in the object. To improve this, using CAM and Selective Search[6] together, we first expand the attention area in the heat map, and a Gaussian smoothing is applied to the extended area to generate retraining data. Finally we train the data to expand the attention area of the objects. The proposed method requires retraining only once, and the search time to find an localization area is greatly reduced since the selective search is not needed in this stage. Through the experiment, the attention area was expanded from the existing CAM heat maps, and in the calculation of IOU (Intersection of Union) with the ground truth for the bounding box of the expanded attention area, about 58% was improved compared to the existing CAM.

Tourism Potential of the Regions in the Conditions of European Integration

  • Tkach, Viktoriia;Rogovyi, Andrii;Zelenska, Olena;Gonta, Olena;Aleshugina, Nataliya;Tochylina, Yuliia
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12
    • /
    • pp.356-364
    • /
    • 2021
  • In the formation of a socially oriented economy in the context of European integration, the development of tourism is one of the priority areas that positively affects the socio-economic situation of the country as a whole and its regions in particular, stimulates important economic activities and strengthens Ukraine's positive image in Europe and the world. In view of this, in the framework of a thorough study of the tourism industry it is necessary to assess its potential. This study proposes an assessment of tourism potential in the regional context, which consists of consistent implementation of six steps, namely: first, the definition of research objects for which the tourism potential is determined; secondly, the formation of a set of basic features for assessing tourism potential of certain objects; thirdly, the collection of information on individual indicators, which are selected to assess the tourism potential of the objects; fourth, the calculation of parametric indices by comparing the indicators of each individual object of study (region) with the average values in the set of objects under study; fifth, the definition of a generalized index of tourism potential of the region; sixth, grouping regions by the values of the generalized index of tourism potential. Execution of the stated algorithm involves the use of various methods, in particular, statistical, graphical, parametric, the analysis of hierarchies, matrix and cartographic. Approbation of the proposed assessment of tourism potential at the regional level in Ukraine allowed to group regions according to the values of the generalized index of tourism potential, which can be used as a basis for developing measures to increase and enhance their tourism potential in Ukraine in terms of European integration.

Study on driver's distraction research trend and deep learning based behavior recognition model

  • Han, Sangkon;Choi, Jung-In
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.11
    • /
    • pp.173-182
    • /
    • 2021
  • In this paper, we analyzed driver's and passenger's motions that cause driver's distraction, and recognized 10 driver's behaviors related to mobile phones. First, distraction-inducing behaviors were classified into environments and factors, and related recent papers were analyzed. Based on the analyzed papers, 10 driver's behaviors related to cell phones, which are the main causes of distraction, were recognized. The experiment was conducted based on about 100,000 image data. Features were extracted through SURF and tested with three models (CNN, ResNet-101, and improved ResNet-101). The improved ResNet-101 model reduced training and validation errors by 8.2 times and 44.6 times compared to CNN, and the average precision and f1-score were maintained at a high level of 0.98. In addition, using CAM (class activation maps), it was reviewed whether the deep learning model used the cell phone object and location as the decisive cause when judging the driver's distraction behavior.

Noise Removal Algorithm using Standard Deviation and Estimation in AWGN Environment (AWGN 환경에서 표준편차 및 추정치를 통한 잡음 제거 알고리즘)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.11
    • /
    • pp.1468-1473
    • /
    • 2018
  • The importance of communication and data processing is increasing with the advance of the Fourth Industrial Revolution. Hence, the importance of video and data processing technologies, which directly influence the accuracy and reliability of equipment, is also increasing. In this research report we propose an algorithm for calculating the final output by estimating the standard deviation and estimate required for removing AWGN while adapting to changes in the frequency factors of video. This algorithm calculates the final output by checking an estimated value against the effective pixel range, which is obtained from the standard deviation of mask factors. Subsequently, the weighted value is computed, taking into account the filter output. To evaluate the functionality of this algorithm, it is compared with the most-commonly used present method through simulation. The simulation results show that the important features of the image are preserved and efficient noise cancellation performance is demonstrated.