• Title/Summary/Keyword: Image feature extraction

Search Result 1,026, Processing Time 0.036 seconds

A Study of Feature-Extraction from the Specifically Intended Product Designs (제품의 특성추출을 통한 디자인 적용 방법에 관한 연구)

  • Hyoung, Sung-Eun;Cho, Un-Dea;Cho, Kwang-Soo
    • Science of Emotion and Sensibility
    • /
    • v.10 no.1
    • /
    • pp.87-98
    • /
    • 2007
  • The aim of this study is to grasp the features of the object which reveals its own specific purposes, and to apply them to the product concept and design forms when designers develop products. For this study, the subjects of the experiment were chosen to fill out a basic questionnaire, and an image analysis of them was performed. After the analysis, the functional design elements of the subjects were extracted and coded. They preyed the correlation between the results of the image analysis and the characteristics of the subjects. The questionnaire was carried out to determine the characteristics of the subjects. As the features of specific products were extracted through this experiment, they can be used as basic data to analyze consumer needs and to better understand the products when we design for them. This can be useful fundamental data enabling designers to understand products easily and to establish concepts for their designs. In the case of the MP3 player in this study, the results of the image analysis of it are turned out to be sound quality, compatibility, portability, employment, interface, and personality. Their respective related features were investigated as well. The important features of designing the MP3 player were presented. Through this fundamental study, it will be possible to understand consumer's needs more effectively, which will bring about the development of the fundamental basis of various fields in design.

  • PDF

A Robust Pattern Watermarking Method by Invisibility and Similarity Improvement (비가시성과 유사도 증가를 통한 강인한 패턴 워터마킹 방법)

  • 이경훈;김용훈;이태홍
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.10
    • /
    • pp.938-943
    • /
    • 2003
  • In this paper, we Propose a method using the Tikhonov-Miller process to improve the robustness of watermarking under various attacks. A visually recognizable pattern watermark is embedded in the LH2, HL2 and HH2 subband of wavelet transformed domain using threshold and besides watermark is embeded by utilizing HVS(Human Visual System) feature. The pattern watermark was interlaced after random Permutation for a security and an extraction rate. To demonstrate the improvement of robustness and similarity of the proposed method, we applied some basic algorithm of image processing such as scaling, filtering, cropping, histogram equalizing and lossy compression(JPEG, gif). As a result of experiment, the proposed method was able to embed robust watermark invisibility and extract with an excellent normalized correlation of watermark under various attacks.

Hangul Component Decomposition in Outline Fonts (한글 외곽선 폰트의 자소 분할)

  • Koo, Sang-Ok;Jung, Soon-Ki
    • Journal of the Korea Computer Graphics Society
    • /
    • v.17 no.4
    • /
    • pp.11-21
    • /
    • 2011
  • This paper proposes a method for decomposing a Hangul glyph of outline fonts into its initial, medial and final components using statistical-structural information. In a font family, the positions of components are statistically consistent and the stroke relationships of a Hangul character reflect its structure. First, we create the component histograms that accumulate the shapes and positions of the same components. Second, we make pixel clusters from character image based on pixel direction probabilities and extract the candidate strokes using position, direction, size of clusters and adjacencies between clusters. Finally, we find the best structural match between candidate strokes and predefined character model by relaxation labeling. The proposed method in this paper can be used for a study on formative characteristics of Hangul font, and for a font classification/retrieval system.

On Motion Planning for Human-Following of Mobile Robot in a Predictable Intelligent Space

  • Jin, Tae-Seok;Hashimoto, Hideki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.1
    • /
    • pp.101-110
    • /
    • 2004
  • The robots that will be needed in the near future are human-friendly robots that are able to coexist with humans and support humans effectively. To realize this, humans and robots need to be in close proximity to each other as much as possible. Moreover, it is necessary for their interactions to occur naturally. It is desirable for a robot to carry out human following, as one of the human-affinitive movements. The human-following robot requires several techniques: the recognition of the moving objects, the feature extraction and visual tracking, and the trajectory generation for following a human stably. In this research, a predictable intelligent space is used in order to achieve these goals. An intelligent space is a 3-D environment in which many sensors and intelligent devices are distributed. Mobile robots exist in this space as physical agents providing humans with services. A mobile robot is controlled to follow a walking human using distributed intelligent sensors as stably and precisely as possible. The moving objects is assumed to be a point-object and projected onto an image plane to form a geometrical constraint equation that provides position data of the object based on the kinematics of the intelligent space. Uncertainties in the position estimation caused by the point-object assumption are compensated using the Kalman filter. To generate the shortest time trajectory to follow the walking human, the linear and angular velocities are estimated and utilized. The computer simulation and experimental results of estimating and following of the walking human with the mobile robot are presented.

On Robust Principal Component using Analysis Neural Networks (신경망을 이용한 로버스트 주성분 분석에 관한 연구)

  • Kim, Sang-Min;Oh, Kwang-Sik;Park, Hee-Joo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.7 no.1
    • /
    • pp.113-118
    • /
    • 1996
  • Principal component analysis(PCA) is an essential technique for data compression and feature extraction, and has been widely used in statistical data analysis, communication theory, pattern recognition, and image processing. Oja(1992) found that a linear neuron with constrained Hebbian learning rule can extract the principal component by using stochastic gradient ascent method. In practice real data often contain some outliers. These outliers will significantly deteriorate the performances of the PCA algorithms. In order to make PCA robust, Xu & Yuille(1995) applied statistical physics to the problem of robust principal component analysis(RPCA). Devlin et.al(1981) obtained principal components by using techniques such as M-estimation. The propose of this paper is to investigate from the statistical point of view how Xu & Yuille's(1995) RPCA works under the same simulation condition as in Devlin et.al(1981).

  • PDF

Similar Movie Contents Retrieval Using Peak Features from Audio (오디오의 Peak 특징을 이용한 동일 영화 콘텐츠 검색)

  • Chung, Myoung-Bum;Sung, Bo-Kyung;Ko, Il-Ju
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.11
    • /
    • pp.1572-1580
    • /
    • 2009
  • Combing through entire video files for the purpose of recognizing and retrieving matching movies requires much time and memory space. Instead, most current similar movie-matching methods choose to analyze only a part of each movie's video-image information. Yet, these methods still share a critical problem of erroneously recognizing as being different matching videos that have been altered only in resolution or converted merely with a different codecs. This paper proposes an audio-information-based search algorithm by which similar movies can be identified. The proposed method prepares and searches through a database of movie's spectral peak information that remains relatively steady even with changes in the bit-rate, codecs, or sample-rate. The method showed a 92.1% search success rate, given a set of 1,000 video files whose audio-bit-rate had been altered or were purposefully written in a different codec.

  • PDF

Using Skeleton Vector Information and RNN Learning Behavior Recognition Algorithm (스켈레톤 벡터 정보와 RNN 학습을 이용한 행동인식 알고리즘)

  • Kim, Mi-Kyung;Cha, Eui-Young
    • Journal of Broadcast Engineering
    • /
    • v.23 no.5
    • /
    • pp.598-605
    • /
    • 2018
  • Behavior awareness is a technology that recognizes human behavior through data and can be used in applications such as risk behavior through video surveillance systems. Conventional behavior recognition algorithms have been performed using the 2D camera image device or multi-mode sensor or multi-view or 3D equipment. When two-dimensional data was used, the recognition rate was low in the behavior recognition of the three-dimensional space, and other methods were difficult due to the complicated equipment configuration and the expensive additional equipment. In this paper, we propose a method of recognizing human behavior using only CCTV images without additional equipment using only RGB and depth information. First, the skeleton extraction algorithm is applied to extract points of joints and body parts. We apply the equations to transform the vector including the displacement vector and the relational vector, and study the continuous vector data through the RNN model. As a result of applying the learned model to various data sets and confirming the accuracy of the behavior recognition, the performance similar to that of the existing algorithm using the 3D information can be verified only by the 2D information.

Environmental IoT-Enabled Multimodal Mashup Service for Smart Forest Fires Monitoring

  • Elmisery, Ahmed M.;Sertovic, Mirela
    • Journal of Multimedia Information System
    • /
    • v.4 no.4
    • /
    • pp.163-170
    • /
    • 2017
  • Internet of things (IoT) is a new paradigm for collecting, processing and analyzing various contents in order to detect anomalies and to monitor particular patterns in a specific environment. The collected data can be used to discover new patterns and to offer new insights. IoT-enabled data mashup is a new technology to combine various types of information from multiple sources into a single web service. Mashup services create a new horizon for different applications. Environmental monitoring is a serious tool for the state and private organizations, which are located in regions with environmental hazards and seek to gain insights to detect hazards and locate them clearly. These organizations may utilize IoT - enabled data mashup service to merge different types of datasets from different IoT sensor networks in order to leverage their data analytics performance and the accuracy of the predictions. This paper presents an IoT - enabled data mashup service, where the multimedia data is collected from the various IoT platforms, then fed into an environmental cognition service which executes different image processing techniques such as noise removal, segmentation, and feature extraction, in order to detect interesting patterns in hazardous areas. The noise present in the captured images is eliminated with the help of a noise removal and background subtraction processes. Markov based approach was utilized to segment the possible regions of interest. The viable features within each region were extracted using a multiresolution wavelet transform, then fed into a discriminative classifier to extract various patterns. Experimental results have shown an accurate detection performance and adequate processing time for the proposed approach. We also provide a data mashup scenario for an IoT-enabled environmental hazard detection service and experimentation results.

Obstacle Recognition by 3D Feature Extraction for Mobile Robot Navigation in an Indoor Environment (복도환경에서의 이동로봇 주행을 위한 3차원 특징추출을 통한 장애물 인식)

  • Jin, Tae-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.9
    • /
    • pp.1987-1992
    • /
    • 2010
  • This paper deals with the method of using the three dimensional characteristic information to classify the front environment in travelling by using the images captured by a CCD camera equipped on a mobile robot. The images detected by the three dimensional characteristic information is divided into the part of obstacles, the part of corners, and th part of doorways in a corridor. In designing the travelling path of a mobile robot, these three situations are used as an important information in the obstacle avoidance and optimal path computing. So, this paper proposes the method of deciding the travelling direction of a mobile robot with using input images based upon the suggested algorithm by preprocessing, and verified the validity of the image information which are detected as obstacles by the analysis through neural network.

Face Recognition Under Ubiquitous Environments (유비쿼터스 환경을 이용한 얼굴인식)

  • Go, Hyoun-Joo;Kim, Hyung-Bae;Yang, Dong-Hwa;Park, Jang-Hwan;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.431-437
    • /
    • 2004
  • This paper propose a facial recognition method based on an ubiquitous computing that is one of next generation intelligence technology fields. The facial images are acquired by a mobile device so-called cellular phone camera. We consider a mobile security using facial feature extraction and recognition process. Facial recognition is performed by the PCA and fuzzy LDA algorithm. Applying the discrete wavelet based on multi-resolution analysis, we compress the image data for mobile system environment. Euclidean metric is applied to measure the similarity among acquired features and then obtain the recognition rate. Finally we use the mobile equipment to show the efficiency of method. From various experiments, we find that our proposed method shows better results, even though the resolution of mobile camera is lower than conventional camera.