• Title/Summary/Keyword: Image feature extraction

Search Result 1,026, Processing Time 0.028 seconds

The Design of Adaptive Component Analysis System for Image Retrieval (영상 검색을 위한 적응적 컴포넌트 분석 시스템 설계)

  • 최철;박장춘
    • Journal of the Korea Society of Computer and Information
    • /
    • v.9 no.2
    • /
    • pp.19-26
    • /
    • 2004
  • This paper proposes ACA (Adaptive Component Analysis) as a method for feature extraction and analysis of the content-based image retrieval system. For satisfactory retrieval, the features extracted from images should be appropriately applied according to the image domains and for this, retrieval measurement is proposed in this study. Retrieval measurement is a standard indicating how important the value of a relevant feature is to image retrieval. ACA is a middle stage for content-based image retrieval and it purposes to improve the retrieval speed and performance.

  • PDF

The Design of Adaptive Component Analysis System for Image Retrieval (영상 검색을 위한 적응적 컴포넌트 분석 시스템 설계)

  • 최철;박장춘
    • KSCI Review
    • /
    • v.12 no.1
    • /
    • pp.9-19
    • /
    • 2004
  • This paper proposes ACA (Adaptive Component Analysis) as a method for feature extraction and analysis of the content-based image retrieval system. For satisfactory retrieval, the features extracted from images should be appropriately applied according to the image domains and for this. retrieval measurement is Proposed in this study. Retrieval measurement is a standard indicating how important the value of a relevant feature is to image retrieval ACA is a middle stage for content-based image retrieval and it purposes to improve the retrieval speed and performance.

  • PDF

Parallelizing Feature Point Extraction in the Multi-Core Environment for Reducing Panorama Image Generation Time (파노라마 이미지 생성시간을 단축하기 위한 멀티코어 환경에서 특징점 추출 병렬화)

  • Kim, Geon-Ho;Choi, Tai-Ho;Chung, Hee-Jin;Kwon, Bom-Jun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.3
    • /
    • pp.331-335
    • /
    • 2008
  • In this paper, we parallelized a feature point extraction algorithm to reduce panorama image generation time in multi-core environment. While we compose a panorama image with several images, the step to extract feature points of each picture is needed to find overlapped region of pictures. To perform rapidly feature extraction stage which requires much calculation, we developed a parallel algorithm to extract feature points and examined the performance using CBE(Cell Broadband Engine) which is asymmetric multi-core architecture. As a result of the exam, the algorithm we proposed has a property of linear scalability-the performance is increased in proportion the number of processors utilized. In this paper, we will suggest how Image processing operation can make high performance result in multi-core environment.

Feature Extraction of Disease Region in Stomach Images Based on DCT (DCT기반 위장영상 질환부위의 특징추출)

  • Ahn, Byeoung-Ju;Lee, Sang-Bock
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.3
    • /
    • pp.167-171
    • /
    • 2012
  • In this paper, we present an algorithm to extract features about disease region in digital stomach images. For feature extraction, DCT coefficients of gastrointestinal imaging matrix was obtained. DCT coefficent matrix is concentrated energy in low frequency region, we were extracted 128 feature parameters in low frequency region. Extracted feature parameters can using for differential compression of PACS and, can using for input parameter in CAD.

Facial Feature Extraction using Genetic Algorithm from Original Image (배경영상에서 유전자 알고리즘을 이용한 얼굴의 각 부위 추출)

  • 이형우;이상진;박석일;민홍기;홍승홍
    • Proceedings of the IEEK Conference
    • /
    • 2000.06d
    • /
    • pp.214-217
    • /
    • 2000
  • Many researches have been performed for human recognition and coding schemes recently. For this situation, we propose an automatic facial feature extraction algorithm. There are two main steps: the face region evaluation from original background image such as office, and the facial feature extraction from the evaluated face region. In the face evaluation, Genetic Algorithm is adopted to search face region in background easily such as office and household in the first step, and Template Matching Method is used to extract the facial feature in the second step. We can extract facial feature more fast and exact by using over the proposed Algorithm.

  • PDF

Feature Extraction Method for the Character Recognition of the Low Resolution Document

  • Kim, Dae-Hak;Cheong, Hyoung-Chul
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.3
    • /
    • pp.525-533
    • /
    • 2003
  • In this paper we introduce some existing preprocessing algorithm for character recognition and consider feature extraction method for the recognition of low resolution document. Image recognition of low resolution document including fax images can be frequently misclassified due to the blurring effect, slope effect, noise and so on. In order to overcome these difficulties in the character recognition we considered a mesh feature extraction and contour direction code feature. System for automatic character recognition were suggested.

  • PDF

LFFCNN: Multi-focus Image Synthesis in Light Field Camera (LFFCNN: 라이트 필드 카메라의 다중 초점 이미지 합성)

  • Hyeong-Sik Kim;Ga-Bin Nam;Young-Seop Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.3
    • /
    • pp.149-154
    • /
    • 2023
  • This paper presents a novel approach to multi-focus image fusion using light field cameras. The proposed neural network, LFFCNN (Light Field Focus Convolutional Neural Network), is composed of three main modules: feature extraction, feature fusion, and feature reconstruction. Specifically, the feature extraction module incorporates SPP (Spatial Pyramid Pooling) to effectively handle images of various scales. Experimental results demonstrate that the proposed model not only effectively fuses a single All-in-Focus image from images with multi focus images but also offers more efficient and robust focus fusion compared to existing methods.

  • PDF

Feature Extraction for Protein Pattern Using Fuzzy Integral (퍼지적분을 이용한 단백질패턴에 관한 특징추출)

  • Song, Young-Jun;Kwon, Heak-Bong;Kim, Mi-Hye
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.1
    • /
    • pp.40-47
    • /
    • 2007
  • In the protein macro array image, it is important to find out the feature of the each protein chip. A decision error by the personal sense of sight occurred from long time observation while making an experiment in many protein chip image. So the feature extraction is needed by a simulator. In the case of feature analysis for macro array scan image the efficiency is maximized. In the fluorescence scan image, the response for each cell have been depend on R, G, B distribution of color image. But it is difficult to be classified as one color feature in the case of mixed color image. In this paper, the response color of a protein chip is classified according to the fuzzy integral value with respect to fuzzy measure as the user desired color. The result of the experiment for the macro array fluorescence image with the Scan Array 5000 shows that the proposed method using the fuzzy integral is important fact to be make decision for the ambiguous color.

Hierarchical stereo matching using feature extraction of an image

  • Kim, Tae-June;Yoo, Ji-Sang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.99-102
    • /
    • 2009
  • In this paper a hierarchical stereo matching algorithm based on feature extraction is proposed. The boundary (edge) as feature point in an image is first obtained by segmenting an image into red, green, blue and white regions. With the obtained boundary information, disparities are extracted by matching window on the image boundary, and the initial disparity map is generated when assigned the same disparity to neighbor pixels. The final disparity map is created with the initial disparity. The regions with the same initial disparity are classified into the regions with the same color and we search the disparity again in each region with the same color by changing block size and search range. The experiment results are evaluated on the Middlebury data set and it show that the proposed algorithm performed better than a phase based algorithm in the sense that only about 14% of the disparities for the entire image are inaccurate in the final disparity map. Furthermore, it was verified that the boundary of each region with the same disparity was clearly distinguished.

  • PDF

Feature Extraction and Statistical Pattern Recognition for Image Data using Wavelet Decomposition

  • Kim, Min-Soo;Baek, Jang-Sun
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.3
    • /
    • pp.831-842
    • /
    • 1999
  • We propose a wavelet decomposition feature extraction method for the hand-written character recognition. Comparing the recognition rates of which methods with original image features and with selected features by the wavelet decomposition we study the characteristics of the proposed method. LDA(Linear Discriminant Analysis) QDA(Quadratic Discriminant Analysis) RDA(Regularized Discriminant Analysis) and NN(Neural network) are used for the calculation of recognition rates. 6000 hand-written numerals from CENPARMI at Concordia University are used for the experiment. We found that the set of significantly selected wavelet decomposed features generates higher recognition rate than the original image features.

  • PDF