• Title/Summary/Keyword: Image feature extraction

Search Result 1,026, Processing Time 0.03 seconds

Robot vision system for face recognition using fuzzy inference from color-image (로봇의 시각시스템을 위한 칼라영상에서 퍼지추론을 이용한 얼굴인식)

  • Lee, Joo-shin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.2
    • /
    • pp.106-110
    • /
    • 2014
  • This paper proposed the face recognition method which can be effectively applied to the robot's vision system. The proposed algorithm is recognition using hue extraction and feature point. hue extraction was using difference of skin color, pupil color, lips color. Features information were extraction from eye, nose and mouth using feature parameters of the difference between the feature point, distance ratio, angle, area. Feature parameters fuzzified data with the data generated by membership function, then evaluate the degree of similarity was the face recognition. The result of experiment are conducted with frontal color images of face as input images the received recognition rate of 96%.

Feature Area-based Vehicle Plate Recognition System(VPRS) (특징 영역 기반의 자동차 번호판 인식 시스템)

  • Jo, Bo-Ho;Jeong, Seong-Hwan
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.6
    • /
    • pp.1686-1692
    • /
    • 1999
  • This paper describes the feature area-based vehicle plate recognition system(VPRS). For the extraction of vehicle plate in a vehicle image, we used the method which extracts vehicle plate area from a s vehicle image using intensity variation. For the extraction of the feature area containing character from the extracted vehicle plate, we used the histogram-based approach and the relative location information of individual characters in the extracted vehicle plate. The extracted feature area is used as the input vector of ART2 neural network. The proposed method simplifies the existing complex preprocessing the solves the problem of distortion and noise in the binarization process. In the difficult cases of character extraction by binarization process of previous method, our method efficiently extracts characters regions and recognizes it.

  • PDF

Comparative Study of Corner and Feature Extractors for Real-Time Object Recognition in Image Processing

  • Mohapatra, Arpita;Sarangi, Sunita;Patnaik, Srikanta;Sabut, Sukant
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.4
    • /
    • pp.263-270
    • /
    • 2014
  • Corner detection and feature extraction are essential aspects of computer vision problems such as object recognition and tracking. Feature detectors such as Scale Invariant Feature Transform (SIFT) yields high quality features but computationally intensive for use in real-time applications. The Features from Accelerated Segment Test (FAST) detector provides faster feature computation by extracting only corner information in recognising an object. In this paper we have analyzed the efficient object detection algorithms with respect to efficiency, quality and robustness by comparing characteristics of image detectors for corner detector and feature extractors. The simulated result shows that compared to conventional SIFT algorithm, the object recognition system based on the FAST corner detector yields increased speed and low performance degradation. The average time to find keypoints in SIFT method is about 0.116 seconds for extracting 2169 keypoints. Similarly the average time to find corner points was 0.651 seconds for detecting 1714 keypoints in FAST methods at threshold 30. Thus the FAST method detects corner points faster with better quality images for object recognition.

Efficient Image Search using Advanced SURF and DCD on Mobile Platform (모바일 플랫폼에서 개선된 SURF와 DCD를 이용한 효율적인 영상 검색)

  • Lee, Yong-Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.2
    • /
    • pp.53-59
    • /
    • 2015
  • Since the amount of digital image continues to grow in usage, users feel increased difficulty in finding specific images from the image collection. This paper proposes a novel image searching scheme that extracts the image feature using combination of Advanced SURF (Speed-Up Robust Feature) and DCD (Dominant Color Descriptor). The key point of this research is to provide a new feature extraction algorithm to improve the existing SURF method with removal of unnecessary feature in image retrieval, which can be adaptable to mobile system and efficiently run on the mobile environments. To evaluate the proposed scheme, we assessed the performance of simulation in term of average precision and F-score on two databases, commonly used in the field of image retrieval. The experimental results revealed that the proposed algorithm exhibited a significant improvement of over 14.4% in retrieval effectiveness, compared to OpenSURF. The main contribution of this paper is that the proposed approach achieves high accuracy and stability by using ASURF and DCD in searching for natural image on mobile platform.

Medical Image Retrieval Using Feature Extraction Based on Wavelet Transform (웨이블렛 변환 기반의 특징 검출을 이용한 의료영상 검색)

  • Lee, H.S.;Ma, K.Y.;Ahn, Y.B.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.321-322
    • /
    • 1998
  • In this paper, a medical images retrieval method using feature extraction based on wavelet transform is proposed. We used energy of coefficients which is represented by wavelet transform. The proposed retrieval algorithm is comprised of the two retrieval. At first, we make a energy map for wavelet coefficient of a query image and then compare is to one of db image. And then we use an edge information of the query image to retrieve the images selected at the first retrieval once more. Consequently some retrieved images are displayed on screen.

  • PDF

Computer Vision System for Automatic Grading of Ginseng - Development of Image Processing Algorithms - (인삼선별의 자동화를 위한 컴퓨터 시각장치 - 등급 자동판정을 위한 영상처리 알고리즘 개발 -)

  • 김철수;이중용
    • Journal of Biosystems Engineering
    • /
    • v.22 no.2
    • /
    • pp.227-236
    • /
    • 1997
  • Manual grading and sorting of red-ginsengs are inherently unreliable due to its subjective nature. A computerized technique based on optical and geometrical characteristics was studied for the objective quality evalution. Spectral reflectance of three categories of red-ginsengs - "Chunsam", "Chisam", "Yangsam" - were measured and analyzed. Variation of reflectance among parts of a single ginseng was more significant than variation among the quality categories of ginsengs. A PC-based image processing algorithm was developed to extract geometrical features such as length and thickness of body, length and number of roots, position of head and branch point, etc. The algorithm consisted of image segmentation, calculation of Euclidean distance, skeletonization and feature extraction. Performance of the algorithm was evaluated using sample ginseng images and found to be mostly sussessful.

  • PDF

A Study of Restoration and Feature Extraction (지문영상의 복원과정과 특징점추출에 관한 연구)

  • 한백룡;이대영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.7
    • /
    • pp.535-544
    • /
    • 1990
  • In this paper, we represent the restoration and feature extraction of fingerprint image. The purpose of restoration of fingerprint image are to com pensate distortion which is affected by noise and to preserve various features of fingerprint image. To extracte the central point of fingerprint, we used sample matrix, and restore fingerprint, we used direction in formation of thinned image and the gray scale of the original images.

  • PDF

Medical Image Classification using Pre-trained Convolutional Neural Networks and Support Vector Machine

  • Ahmed, Ali
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.1-6
    • /
    • 2021
  • Recently, pre-trained convolutional neural network CNNs have been widely used and applied for medical image classification. These models can utilised in three different ways, for feature extraction, to use the architecture of the pre-trained model and to train some layers while freezing others. In this study, the ResNet18 pre-trained CNNs model is used for feature extraction, followed by the support vector machine for multiple classes to classify medical images from multi-classes, which is used as the main classifier. Our proposed classification method was implemented on Kvasir and PH2 medical image datasets. The overall accuracy was 93.38% and 91.67% for Kvasir and PH2 datasets, respectively. The classification results and performance of our proposed method outperformed some of the related similar methods in this area of study.

Image Feature-Based Real-Time RGB-D 3D SLAM with GPU Acceleration (GPU 가속화를 통한 이미지 특징점 기반 RGB-D 3차원 SLAM)

  • Lee, Donghwa;Kim, Hyongjin;Myung, Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.5
    • /
    • pp.457-461
    • /
    • 2013
  • This paper proposes an image feature-based real-time RGB-D (Red-Green-Blue Depth) 3D SLAM (Simultaneous Localization and Mapping) system. RGB-D data from Kinect style sensors contain a 2D image and per-pixel depth information. 6-DOF (Degree-of-Freedom) visual odometry is obtained through the 3D-RANSAC (RANdom SAmple Consensus) algorithm with 2D image features and depth data. For speed up extraction of features, parallel computation is performed with GPU acceleration. After a feature manager detects a loop closure, a graph-based SLAM algorithm optimizes trajectory of the sensor and builds a 3D point cloud based map.

Lane Violation Detection System Using Feature Tracking (특징점 추적을 이용한 끼어들기 위반차량 검지 시스템)

  • Lee, Hee-Sin;Lee, Joon-Whoan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.2
    • /
    • pp.36-44
    • /
    • 2009
  • In this paper, we suggest a system of detecting a vehicle with lane violation, which can detect the vehicle with lane violation, by using the feature point tracking. The whole algorithm in the suggested system of detecting a vehicle with lane violation is composed of three stages such as feature extraction, register and tracking in feature for the tracking-targeted vehicle, and detecting a vehicle with lane violation. In the stage of feature extraction, the feature is extracted from the inputted image by sing the feature-extraction algorithm available for the real-time processing. The extracted features are again selected the racking-targeted feature. The registered feature is tracked by using NCC(normalized cross correlation). Finally, whether or not lane violation is finally detected by using information on the tracked features. As a result of experimenting the suggested system by using the acquired image in the section with a ban on intervention, the excellent performance was shown with 99.09% for positive recognition ratio and 0.9% for error ratio. The fast processing speed could be obtained in 34.48 frames per second available for real-time processing.

  • PDF