• 제목/요약/키워드: Image extraction

검색결과 2,625건 처리시간 0.039초

지하수 부존 가능지역 추출을 위한 LANDSAT TM 자료와 GIS의 통합(I) - LANDSAT TM 자료에 의한 지하수 부존 가능지역 추출 - (The Integration of GIS with LANDSAT TM Data for Ground Water Potential Area Mapping (I) - Extraction of the Ground Water Potential Area using LANDSAT TM Data -)

  • 지종훈
    • 대한원격탐사학회지
    • /
    • 제7권1호
    • /
    • pp.29-43
    • /
    • 1991
  • The study was performed to extraction the ground water potential area using LANDSAT TM data. The image processing techniques developed for the study are contrast transformation, differential filtering and pseudo stereoscopic image methods. These were examined for lineament extraction, lineament interpretation and the integration of vertor data with LANDSAT data. The differential filtering method is much usefull for lineament extraction, and all direction lineaments are clearly shown on the band 5 image of LANDSAT TM. The pseudo stereoscopic image are made in which color differential method is adopted, the pair images are usefull for the lineament interpretation. The results of the analysis are as follows. 1) there is a close correlation between lineament and cased well in the study area, because 33 wells of the developed 45 cased wells coincide with the lineaments. 2) 21 sites in the study area were selected for pumping test, and as a result 11 sites of them produces over than 200 ton/day.

블록 동질성 분할을 이용한 화재불꽃 영역 추출에 관한 연구 (A Study on the Fire Flame Region Extraction Using Block Homogeneity Segmentation)

  • 박창민
    • 디지털산업정보학회논문지
    • /
    • 제14권4호
    • /
    • pp.169-176
    • /
    • 2018
  • In this study, we propose a new Fire Flame Region Extraction using Block Homogeneity Segmentation method of the Fire Image with irregular texture and various colors. It is generally assumed that fire flame extraction plays a very important role. The Color Image with fire flame is divided into blocks and edge strength for each block is computed by using modified color histogram intersection method that has been developed to differentiate object boundaries from irregular texture boundaries effectively. The block homogeneity is designed to have the higher value in the center of region with the homeogenous colors or texture while to have lower value near region boundaries. The image represented by the block homogeneity is gray scale image and watershed transformation technique is used to generate closed boundary for each region. As the watershed transform generally results in over-segmentation, region merging based on common boundary strength is followed. The proposed method can be applied quickly and effectively to the initial response of fire.

Brain Extraction of MR Images

  • Du, Ruoyu;Lee, Hyo Jong
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2010년도 춘계학술발표대회
    • /
    • pp.455-458
    • /
    • 2010
  • Extracting the brain from magnetic resonance imaging head scans is an essential preprocessing step of which the accuracy greatly affects subsequent image analysis. The currently popular Brain Extraction Tool produces a brain mask which may be too smooth for practical use to reduce the accuracy. This paper presents a novel and indirect brain extraction method based on non-brain tissue segmentation. Based on ITK, the proposed method allows a non-brain contour by using region growing to match with the original image naturally and extract the brain tissue. Experiments on two set of MRI data and 2D brain image in horizontal plane and 3D brain model indicate successful extraction of brain tissue from a head.

SIFT 와 SURF 알고리즘의 성능적 비교 분석 (Comparative Analysis of the Performance of SIFT and SURF)

  • 이용환;박제호;김영섭
    • 반도체디스플레이기술학회지
    • /
    • 제12권3호
    • /
    • pp.59-64
    • /
    • 2013
  • Accurate and robust image registration is important task in many applications such as image retrieval and computer vision. To perform the image registration, essential required steps are needed in the process: feature detection, extraction, matching, and reconstruction of image. In the process of these function, feature extraction not only plays a key role, but also have a big effect on its performance. There are two representative algorithms for extracting image features, which are scale invariant feature transform (SIFT) and speeded up robust feature (SURF). In this paper, we present and evaluate two methods, focusing on comparative analysis of the performance. Experiments for accurate and robust feature detection are shown on various environments such like scale changes, rotation and affine transformation. Experimental trials revealed that SURF algorithm exhibited a significant result in both extracting feature points and matching time, compared to SIFT method.

AUTOMATIC ROAD NETWORK EXTRACTION. USING LIDAR RANGE AND INTENSITY DATA

  • Kim, Moon-Gie;Cho, Woo-Sug
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.79-82
    • /
    • 2005
  • Recently the necessity of road data is still being increased in industrial society, so there are many repairing and new constructions of roads at many areas. According to the development of government, city and region, the update and acquisition of road data for GIS (Geographical Information System) is very necessary. In this study, the fusion method with range data(3D Ground Coordinate System Data) and Intensity data in stand alone LiDAR data is used for road extraction and then digital image processing method is applicable. Up to date Intensity data of LiDAR is being studied. This study shows the possibility method for road extraction using Intensity data. Intensity and Range data are acquired at the same time. Therefore LiDAR does not have problems of multi-sensor data fusion method. Also the advantage of intensity data is already geocoded, same scale of real world and can make ortho-photo. Lastly, analysis of quantitative and quality is showed with extracted road image which compare with I: 1,000 digital map.

  • PDF

SHADOW EXTRACTION FROM ASTER IMAGE USING MIXED PIXEL ANALYSIS

  • Kikuchi, Yuki;Takeshi, Miyata;Masataka, Takagi
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.727-731
    • /
    • 2003
  • ASTER image has some advantages for classification such as 15 spectral bands and 15m ${\sim}$ 90m spatial resolution. However, in the classification using general remote sensing image, shadow areas are often classified into water area. It is very difficult to divide shadow and water. Because reflectance characteristics of water is similar to characteristics of shadow. Many land cover items are consisted in one pixel which is 15m spatial resolution. Nowadays, very high resolution satellite image (IKONOS, Quick Bird) and Digital Surface Model (DSM) by air borne laser scanner can also be used. In this study, mixed pixel analysis of ASTER image has carried out using IKONOS image and DSM. For mixed pixel analysis, high accurated geometric correction was required. Image matching method was applied for generating GCP datasets. IKONOS image was rectified by affine transform. After that, one pixel in ASTER image should be compared with corresponded 15×15 pixel in IKONOS image. Then, training dataset were generated for mixed pixel analysis using visual interpretation of IKONOS image. Finally, classification will be carried out based on Linear Mixture Model. Shadow extraction might be succeeded by the classification. The extracted shadow area was validated using shadow image which generated from 1m${\sim}$2m spatial resolution DSM. The result showed 17.2% error was occurred in mixed pixel. It might be limitation of ASTER image for shadow extraction because of 8bit quantization data.

  • PDF

카메라 기반 문서영상에서의 문자 추출 (Text extraction from camera based document image)

  • 박희주;김진호
    • 한국산업정보학회논문지
    • /
    • 제8권2호
    • /
    • pp.14-20
    • /
    • 2003
  • 본 논문에서는 카메라로 획득한 문서영상에 대해 조명의 영향에 관계없이 고속으로 문자영역을 추출하는 알고리즘을 제안하였다. 카메라 문서는 스캐너 문서와는 달리 주변 환경이나 조명의 영향으로 인하여 문자영역을 추출하는 것이 매우 어렵다. 먼저 영상 사전처리 단계에서 컬러영상을 명도영상으로 변환한 후 조명의 영향에 무관하게 배경 그림으로부터 문자 영역을 정확히 추출하기 위해서 명도레벨 정규화를 사용하였다. 또한 배경 그림 및 잡음은 제거하고 문자 획의 손실 없이 문자 영역을 추출하기 위하여 국소-적응적-이진화-방법(local adaptive binarization method)을 새롭게 개발하여 문서영상을 이진화시켰다. 문자영역 추출 단계에서는 수평 및 수직 투영과 연결요소 정보에 의해 문자열, 단어 및 개별 문자 영역을 단계적으로 추출하였다. 제안된 방법의 타당성을 검증하기 위하여 ETRI에서 구축한 한글/영어/숫자/특수기호가 혼합된 현장 문서영상 DB를 가지고 실험해 보았다.

  • PDF

실시간 칼라영상에서 객체추출 및 추적 (Object Extraction and Tracking out of Color Image in Real-Time)

  • 최내원;오해석
    • 정보처리학회논문지B
    • /
    • 제10B권1호
    • /
    • pp.81-86
    • /
    • 2003
  • 본 논문은 고정영역에서 움직이는 객체를 검출하기 위한 방법으로 배경영상과 입력영상의 차를 이용하여 객체를 추출하고 추출된 객체의 이동을 추적하는 방법에 대해 제안하였다. 객체를 추출하는 방법으로 고정영역에 새로운 객체의 위치를 파악하기 위해 전체 영상의 픽셀을 연산에 참여시키는 것이 아니라 영상의 테두리에 설정된 영역의 픽셀들만을 연산에 참여시킨다. 따라서 중앙영역이 연산에서 제외되어 객체추출의 시간을 효과적으로 단축시킬 수 있었다. 또한 설정영역에서 객체를 추출하기 위하여 시작위치를 먼저 파악하고 시작위치로부터 객체의 가로와 세로의 크기를 추출함으로써 객체의 영역을 검출하였다. 이동된 객체의 추적에는 추출된 중심좌표를 이용하였다.

그림자영향 소거를 통한 아스팔트 도로 경계추출에 관한 연구 (A Study on the Asphalt Road Boundary Extraction Using Shadow Effect Removal)

  • 윤공현
    • 대한원격탐사학회지
    • /
    • 제22권2호
    • /
    • pp.123-129
    • /
    • 2006
  • 고해상도 컬러항공영상은 공간정보생성을 위한 지형의 상세한 정량적 및 정성적 정보를 제공해준다. 하지만 도심지역에서 빌딩 또는 숲에 의한 그림자의 발생으로 인하여 지물 추출 및 분류시 부정확한 결과를 초래 시킬 수 있다. 현재까지 그림자 효과에 대한 여러 연구가 이뤄졌으나 도심지에서 그림자의 발생으로 야기된 분광정보 왜곡의 문제점을 해결하여 도로추출에 대한 연구가 매우 부족한 실정이다 본 연구에서는 컬러항공사진과 LIDAR(LIght Detection and Ranging) 고도 자료를 이용하여 아스팔트 도로 경계선을 추출하는 기법을 제안하였다. 구체적으로 그림자 영향의 제거를 통한 아스팔트 도로 경계선의 추출과정은 다음과 같다. 첫 번째, 항공사진에서 그림자 영역을 LIDAR자료부터 생성된 DSM(Digital Surface Model)과 태양각으로부터 추출하였다. 그 후 도로영역추출기법, 경계선 검출기법을 통하여 도로의 경계를 추출하였으며 이 자료를 벡터화하므로서 GIS벡터의 선분 자료로 생성하였다. 본 연구의 실험결과 제안된 방법은 그림자의 영향을 소거하여 원활한 아스팔트 도로의 경계를 추출하는데 있어서 효과적임을 알 수 있었다.

분할된 영상에서의 칼라 코렐로그램을 이용한 영상검색 (Image Retrieval Using Color Correlogram from a Segmented Image)

  • 안명석;조석제
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2000년도 추계종합학술대회논문집
    • /
    • pp.153-156
    • /
    • 2000
  • Recently, there has been studied on feature extraction method for efficient content-based image retrieval. Especially, Many researchers have been studying on extracting feature from color Information, because of its advantages. This paper proposes a feature and its extraction method based on color correlogram that is extracted from color information in an image. the proposed method is computed from the image segmented into two parts; the complex part and the plain part. Our experiments show that the performance of the proposed method is better as compared with that of the original color correlogram method.

  • PDF