• Title/Summary/Keyword: Image equipment

Search Result 971, Processing Time 0.023 seconds

Evaluation of the Noise Power Spectrum by Using American College of Radiology Phantom for Magnetic Resonance Imaging (자기공명영상에서 ACR 팬텀을 이용한 잡음전력스펙트럼 평가)

  • Jung-Whan Min;Hoi-Woun Jeong
    • Journal of radiological science and technology
    • /
    • v.47 no.1
    • /
    • pp.21-28
    • /
    • 2024
  • This study was purpose to quantitative evaluation of comparison of the image intensity uniformity and noise power spectrum (NPS) by using American college of radiology (ACR) phantom for magnetic resonance imaging (MRI). The MRI was used achiva 3.0T MRI and discovery MR 750, 3.0T, the head and neck matrix shim SENSE head coil were 32 channels receive MR coil. The MRI was used parameters of image sequence for ACR standard and general hospital. NPS value of the ACR standard T2 vertical image in GE equipment was 7.65E-06 when the frequency was 1.0 mm-1. And the NPS value of the ACR hospital T1 region of interest (ROI) 9 over all vertical image in Philips equipment was 9E-08 when the frequency was 1.0 mm-1 and the NPS value of the hospital T2 ROI 9 over all vertical image in Philips equipment was 1.06E-07 when the frequency was 1.0 mm-1. NPS was used efficiently by using a general hospital vertical sequence more than the standard vertical sequence method by using the ACR phantom. Furthermore NPS was the quantitative quality assurance (QA) assessment method for noise and image intensity uniformity characteristics was applied mutatis mutandis, and the results values of the physical imaging NPS of the 3.0T MRI and ACR phantom were presented.

DEVELOPMENT OF A COMPUTER PROGRAM FOR ASTRONOMICAL IMAGE DATA PROCESSING BY OBSERVATIONAL EQUIPMENT IN ASTRONOMICAL OBSERVATORY OF KYUNG HEE UNIVERSITY (경희대학교 천문대의 천체관측 자료처리용 프로그램 개발)

  • Kim, Gap-Seong
    • Publications of The Korean Astronomical Society
    • /
    • v.10 no.1
    • /
    • pp.135-146
    • /
    • 1995
  • We have developed a graphic software for image processing of astronomical data obtained by observational equipment in Astronomical Observatory of Kyung Hee University. The essential hardware for running our computer program is simply composed of a PC with the graphic card to handle 256 colors and the color graphic monitor, including CCD camera system. Our software has been programmed in WINDOWS to provide good environments for users, by using various techniques of image processing on astronomical image data recorded in FITS format by KHCCD program(Jin and Kim, 1994) with a compressional mode. We are convinced that our results will be a fundamental and useful technique in the construction of data processing system and can be effectively used in any other observatories, as well as in data processing system of Kyung Hee University.

  • PDF

FGI(Frame Grabber Interface) Design for MSC(Multi-Spectral Camera) Image Data Test

  • Kim, Young-Sun;Yong, Sang-Soon;Kong, Jong-Pil;Heo, Haeng-Pal;Park, Jong-Euk;Paik, Hong-Yul
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1156-1158
    • /
    • 2003
  • The FGI is an integral component of the MSC test equipment and is situated in a slot along the ISA bus of the test equipment PC. The main function of the FGI is an interface between the MSC image data via hotlink interface and Frame Grabber. The FGI has two independent receiving channels that allow the board to receive image data arriving. The FGI also includes two transmission channels with hotlink transmitters. Additionally, the FGI is capable of generating digital video test patterns to test the NUC.

  • PDF

A fast high-resolution vibration measurement method based on vision technology for structures

  • Son, Ki-Sung;Jeon, Hyeong-Seop;Chae, Gyung-Sun;Park, Jae-Seok;Kim, Se-Oh
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.294-303
    • /
    • 2021
  • Various types of sensors are used at industrial sites to measure vibration. With the increase in the diversity of vibration measurement methods, vibration monitoring methods using camera equipment have recently been introduced. However, owing to the physical limitations of the hardware, the measurement resolution is lower than that of conventional sensors, and real-time processing is difficult because of extensive image processing. As a result, most such methods in practice only monitor status trends. To address these disadvantages, a high-resolution vibration measurement method using image analysis of the edge region of the structure has been reported. While this method exhibits higher resolution than the existing vibration measurement technique using a camera, it requires significant amount of computation. In this study, a method is proposed for rapidly processing considerable amount of image data acquired from vision equipment, and measuring the vibration of structures with high resolution. The method is then verified through experiments. It was shown that the proposed method can fast measure vibrations of structures remotely.

Implementation of an improved real-time object tracking algorithm using brightness feature information and color information of object

  • Kim, Hyung-Hoon;Cho, Jeong-Ran
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.5
    • /
    • pp.21-28
    • /
    • 2017
  • As technology related to digital imaging equipment is developed and generalized, digital imaging system is used for various purposes in fields of society. The object tracking technology from digital image data in real time is one of the core technologies required in various fields such as security system and robot system. Among the existing object tracking technologies, cam shift technology is a technique of tracking an object using color information of an object. Recently, digital image data using infrared camera functions are widely used due to various demands of digital image equipment. However, the existing cam shift method can not track objects in image data without color information. Our proposed tracking algorithm tracks the object by analyzing the color if valid color information exists in the digital image data, otherwise it generates the lightness feature information and tracks the object through it. The brightness feature information is generated from the ratio information of the width and the height of the area divided by the brightness. Experimental results shows that our tracking algorithm can track objects in real time not only in general image data including color information but also in image data captured by an infrared camera.

O-ring Size Measurement Based on a Small Machine Vision Inspection Equipment (소형 머신 비전 검사 장비에 기반한 O링 치수 측정)

  • Jung, YouSoo;Park, Kil-Houm
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.4
    • /
    • pp.41-52
    • /
    • 2014
  • In this paper, O-ring size measurement algorithm based on a small machine vision inspection equipment which can replace a expensive and large machine vision inspection equipment is presented. The small machine vision inspection equipment acquires a image from a CCD camera shooting a measurement plane which located on a back light and the proposed size measurement algorithm is apply to the image. For improvement of size measurement accuracy, camera lens distortion correction and perspective distortion correction are conducted by software technique. Consider O-ring's shape, ellipse fitting model is applied. In order to increase the reliability of ellipse fitting, RANSAC algorithm is applied.

Quality Control of Diagnostic X-ray Equipment in Medical Field (의료분야 진단용방사선발생장치의 품질관리)

  • Cho, Pyong-Kon
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.2
    • /
    • pp.159-164
    • /
    • 2021
  • The examination using diagnostic x-ray equipment is one of the most useful diagnostic equipment for identifying information in the human body in diagnostic radiology. For this reason, the number of examinations has recently increased a lot. Increasing the number of examinations will accelerate the aging of the device. In addition, this makes them aware of the importance of quality control for the diagnostic x-ray device. Particularly, in a diagnostic x-ray device, quality control refers to an act of always maintaining a certain level of image quality by identifying and correcting all problems that may lead to reduction of the diagnosis area in advance. Therefore, this study summarizes and reports general information about quality control in examinations using diagnostic x-ray equipment.

Analysis of Radiation Exposure Dose according to Location Change during Radiation Irradiation

  • Chang-Ho Cho;Jeong-Lae Kim
    • International Journal of Advanced Culture Technology
    • /
    • v.12 no.2
    • /
    • pp.368-374
    • /
    • 2024
  • During an X-ray examination, the beam of radiation is dispersed in many directions. We believe that managing radiation dose is about providing transparency to users and patients in the accurate investigation and analysis of radiation dose. The purpose of measuring the radiation dose as a function of location is to ensure that medical personnel using the equipment or participating in the operating room are minimally harmed by the different radiation doses depending on their location. Four mobile diagnostic X-ray units were used to analyze the radiation dose depending on the spatial location. The image intensifier and the flat panel detector type that receives the image analyzed the dose by angle to measure the distribution of the exposure dose by location. The radiation equipment used was composed of four units, and measuring devices were installed according to the location. The X-ray (C-arm) was measured by varying the position from 0 to 360 degrees, and the highest dose was measured at the center position based on the abdominal position, and the highest dose was measured at the 90° position for the head position when using the image intensifier equipment. The operator or medical staff can see that the radiation dose varies depending on the position of the diagnostic radiation generator. In the image intensifier and flat panel detector type that accepts images, the dose by angle was analyzed for the distribution of exposed dose by position, and the measurement method should be changed according to the provision of dose information that is different from the dose output from the equipment according to the position.

Education Equipment for FPGA Design of Sensor-based IOT System (센서 기반의 IOT 시스템의 FPGA 설계 교육용 장비)

  • Cho, Byung-woo;Kim, Nam-young;Yu, Yun-seop
    • Journal of Practical Engineering Education
    • /
    • v.8 no.2
    • /
    • pp.111-120
    • /
    • 2016
  • Education equipment for field programmable gate array (FPGA) design of sensor-based IOT (Internet Of Thing) system is introduced. Because sensors have different interfaces, several types of interface controller on FPGA need. Using this equipment, several types of interface controller, which can control ADC (analog-to-digital converter) for analog sensor outputs and $I^2C$ (Inter-Integrated Circuit), SPI (Serial Peripheral Interface Bus), and GPIO (General-Purpose Input/Output) for digital sensor outputs, can be designed on FPGA. Image processing hardware using image sensors and display controller for real and image-processed images or videos can be design on FPGA chip. This equipment can design a SOC (System On Chip) consisting of a hard process core on Linux OS and a FPGA block for IOT system which can communicate with wire and wireless networks. Using the education equipment, an example of hardware design using image sensor and accelerometer is described, and an example of syllabus for "Digital system design using FPGA" course is introduced. Using the education equipment, students can develop the ability to design some hardware, and to train the ability for the creative capstone design through conceptual, partial-level, and detail designs.

Evaluation of the Usefulness of Ancillary Devices for Patients with Acute Lumbar Pain During Magnetic Resonance Imaging (자기공명영상검사 시 급성 요추 통증 환자를 위한 보조기구의 유용성 평가)

  • Park, Hee-Wang;Lee, Moo-Sik;Kim, Yong-Kwon;Bae, Seok-Hwan
    • Journal of radiological science and technology
    • /
    • v.41 no.3
    • /
    • pp.193-199
    • /
    • 2018
  • The purpose of this study was to evaluate the convenience and image quality of patients with acute lumbar pain patients at a general hospital in Daejeon using ancillary devices for postural changes and correction. The results of the study are summarized as follows. First, the Turbo S pin Echo technique(TS E) using ancillary equipment has the highest image evaluation rating with an average score of 4.440, which is highly valuable on a diagnosis. Second, the average score for patient the questionnaire 'When using ancillary equipment, I feel that my body is calibrated to side without bias.' was shown as 4.440, which is very useful for the correction of the patient's body when using ancillary equipment. Finally, Breath Hold technique(BH) is very effective in shortening test time of acute lumbar pain patients, because it can reduce test time 86.4% faster than Turbo Spin Echo technique(TSE). The results of the study showed that the use of ancillary equipment to perform the test through the side lying postures helped to reduce the pain and control the patient's breathing, and the diagnostic value of the image was high.