• Title/Summary/Keyword: Image detection systems

Search Result 1,121, Processing Time 0.026 seconds

Development of a Prototype System for Aquaculture Facility Auto Detection Using KOMPSAT-3 Satellite Imagery (KOMPSAT-3 위성영상 기반 양식시설물 자동 검출 프로토타입 시스템 개발)

  • KIM, Do-Ryeong;KIM, Hyeong-Hun;KIM, Woo-Hyeon;RYU, Dong-Ha;GANG, Su-Myung;CHOUNG, Yun-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.4
    • /
    • pp.63-75
    • /
    • 2016
  • Aquaculture has historically delivered marine products because the country is surrounded by ocean on three sides. Surveys on production have been conducted recently to systematically manage aquaculture facilities. Based on survey results, pricing controls on marine products has been implemented to stabilize local fishery resources and to ensure minimum income for fishermen. Such surveys on aquaculture facilities depend on manual digitization of aerial photographs each year. These surveys that incorporate manual digitization using high-resolution aerial photographs can accurately evaluate aquaculture with the knowledge of experts, who are aware of each aquaculture facility's characteristics and deployment of those facilities. However, using aerial photographs has monetary and time limitations for monitoring aquaculture resources with different life cycles, and also requires a number of experts. Therefore, in this study, we investigated an automatic prototype system for detecting boundary information and monitoring aquaculture facilities based on satellite images. KOMPSAT-3 (13 Scene), a local high-resolution satellite provided the satellite imagery collected between October and April, a time period in which many aquaculture facilities were operating. The ANN classification method was used for automatic detecting such as cage, longline and buoy type. Furthermore, shape files were generated using a digitizing image processing method that incorporates polygon generation techniques. In this study, our newly developed prototype method detected aquaculture facilities at a rate of 93%. The suggested method overcomes the limits of existing monitoring method using aerial photographs, but also assists experts in detecting aquaculture facilities. Aquaculture facility detection systems must be developed in the future through application of image processing techniques and classification of aquaculture facilities. Such systems will assist in related decision-making through aquaculture facility monitoring.

CAS 500-1/2 Image Utilization Technology and System Development: Achievement and Contribution (국토위성정보 활용기술 및 운영시스템 개발: 성과 및 의의)

  • Yoon, Sung-Joo;Son, Jonghwan;Park, Hyeongjun;Seo, Junghoon;Lee, Yoojin;Ban, Seunghwan;Choi, Jae-Seung;Kim, Byung-Guk;Lee, Hyun jik;Lee, Kyu-sung;Kweon, Ki-Eok;Lee, Kye-Dong;Jung, Hyung-sup;Choung, Yun-Jae;Choi, Hyun;Koo, Daesung;Choi, Myungjin;Shin, Yunsoo;Choi, Jaewan;Eo, Yang-Dam;Jeong, Jong-chul;Han, Youkyung;Oh, Jaehong;Rhee, Sooahm;Chang, Eunmi;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_2
    • /
    • pp.867-879
    • /
    • 2020
  • As the era of space technology utilization is approaching, the launch of CAS (Compact Advanced Satellite) 500-1/2 satellites is scheduled during 2021 for acquisition of high-resolution images. Accordingly, the increase of image usability and processing efficiency has been emphasized as key design concepts of the CAS 500-1/2 ground station. In this regard, "CAS 500-1/2 Image Acquisition and Utilization Technology Development" project has been carried out to develop core technologies and processing systems for CAS 500-1/2 data collecting, processing, managing and distributing. In this paper, we introduce the results of the above project. We developed an operation system to generate precision images automatically with GCP (Ground Control Point) chip DB (Database) and DEM (Digital Elevation Model) DB over the entire Korean peninsula. We also developed the system to produce ortho-rectified images indexed to 1:5,000 map grids, and hence set a foundation for ARD (Analysis Ready Data)system. In addition, we linked various application software to the operation system and systematically produce mosaic images, DSM (Digital Surface Model)/DTM (Digital Terrain Model), spatial feature thematic map, and change detection thematic map. The major contribution of the developed system and technologies includes that precision images are to be automatically generated using GCP chip DB for the first time in Korea and the various utilization product technologies incorporated into the operation system of a satellite ground station. The developed operation system has been installed on Korea Land Observation Satellite Information Center of the NGII (National Geographic Information Institute). We expect the system to contribute greatly to the center's work and provide a standard for future ground station systems of earth observation satellites.

An Analysis on the Usability of Unmanned Aerial Vehicle(UAV) Image to Identify Water Quality Characteristics in Agricultural Streams (농업지역 소하천의 수질 특성 파악을 위한 UAV 영상 활용 가능성 분석)

  • Kim, Seoung-Hyeon;Moon, Byung-Hyun;Song, Bong-Geun;Park, Kyung-Hun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.3
    • /
    • pp.10-20
    • /
    • 2019
  • Irregular rainfall caused by climate change, in combination with non-point pollution, can cause water systems worldwide to suffer from frequent eutrophication and algal blooms. This type of water pollution is more common in agricultural prone to water system inflow of non-point pollution. Therefore, in this study, the correlation between Unmanned Aerial Vehicle(UAV) multi-spectral images and total phosphorus, total nitrogen, and chlorophyll-a with indirect association of algal blooms, was analyzed to identify the usability of UAV image to identify water quality characteristics in agricultural streams. The analysis the vegetation index Normalized Differences Index (NDVI), the Normalized Differences Red Edge(NDRE), and the Chlorophyll Index Red Edge(CIRE) for the detection of multi-spectral images and algal blooms collected from the target regions Yang cheon and Hamyang Wicheon. The analysis of the correlation between image values and water quality analysis values for the water sampling points, total phosphorus at a significance level of 0.05 was correlated with the CIRE(0.66), and chlorophyll-a showed correlation with Blue(-0.67), Green(-0.66), NDVI(0.75), NDRE (0.67), CIRE(0.74). Total nitrogen was correlated with the Red(-0.64), Red edge (-0.64) and Near-Infrared Ray(NIR)(-0.72) wavelength at the significance level of 0.05. The results of this study confirmed a significant correlations between multi-spectral images collected through UAV and the factors responsible for water pollution, In the case of the vegetation index used for the detection of algal bloom, the possibility of identification of not only chlorophyll-a but also total phosphorus was confirmed. This data will be used as a meaningful data for counterplan such as selecting non-point pollution apprehensive area in agricultural area.

Video Scene Detection using Shot Clustering based on Visual Features (시각적 특징을 기반한 샷 클러스터링을 통한 비디오 씬 탐지 기법)

  • Shin, Dong-Wook;Kim, Tae-Hwan;Choi, Joong-Min
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.47-60
    • /
    • 2012
  • Video data comes in the form of the unstructured and the complex structure. As the importance of efficient management and retrieval for video data increases, studies on the video parsing based on the visual features contained in the video contents are researched to reconstruct video data as the meaningful structure. The early studies on video parsing are focused on splitting video data into shots, but detecting the shot boundary defined with the physical boundary does not cosider the semantic association of video data. Recently, studies on structuralizing video shots having the semantic association to the video scene defined with the semantic boundary by utilizing clustering methods are actively progressed. Previous studies on detecting the video scene try to detect video scenes by utilizing clustering algorithms based on the similarity measure between video shots mainly depended on color features. However, the correct identification of a video shot or scene and the detection of the gradual transitions such as dissolve, fade and wipe are difficult because color features of video data contain a noise and are abruptly changed due to the intervention of an unexpected object. In this paper, to solve these problems, we propose the Scene Detector by using Color histogram, corner Edge and Object color histogram (SDCEO) that clusters similar shots organizing same event based on visual features including the color histogram, the corner edge and the object color histogram to detect video scenes. The SDCEO is worthy of notice in a sense that it uses the edge feature with the color feature, and as a result, it effectively detects the gradual transitions as well as the abrupt transitions. The SDCEO consists of the Shot Bound Identifier and the Video Scene Detector. The Shot Bound Identifier is comprised of the Color Histogram Analysis step and the Corner Edge Analysis step. In the Color Histogram Analysis step, SDCEO uses the color histogram feature to organizing shot boundaries. The color histogram, recording the percentage of each quantized color among all pixels in a frame, are chosen for their good performance, as also reported in other work of content-based image and video analysis. To organize shot boundaries, SDCEO joins associated sequential frames into shot boundaries by measuring the similarity of the color histogram between frames. In the Corner Edge Analysis step, SDCEO identifies the final shot boundaries by using the corner edge feature. SDCEO detect associated shot boundaries comparing the corner edge feature between the last frame of previous shot boundary and the first frame of next shot boundary. In the Key-frame Extraction step, SDCEO compares each frame with all frames and measures the similarity by using histogram euclidean distance, and then select the frame the most similar with all frames contained in same shot boundary as the key-frame. Video Scene Detector clusters associated shots organizing same event by utilizing the hierarchical agglomerative clustering method based on the visual features including the color histogram and the object color histogram. After detecting video scenes, SDCEO organizes final video scene by repetitive clustering until the simiarity distance between shot boundaries less than the threshold h. In this paper, we construct the prototype of SDCEO and experiments are carried out with the baseline data that are manually constructed, and the experimental results that the precision of shot boundary detection is 93.3% and the precision of video scene detection is 83.3% are satisfactory.

Clustering-based Hierarchical Scene Structure Construction for Movie Videos (영화 비디오를 위한 클러스터링 기반의 계층적 장면 구조 구축)

  • Choi, Ick-Won;Byun, Hye-Ran
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.5
    • /
    • pp.529-542
    • /
    • 2000
  • Recent years, the use of multimedia information is rapidly increasing, and the video media is the most rising one than any others, and this field Integrates all the media into a single data stream. Though the availability of digital video is raised largely, it is very difficult for users to make the effective video access, due to its length and unstructured video format. Thus, the minimal interaction of users and the explicit definition of video structure is a key requirement in the lately developing image and video management systems. This paper defines the terms and hierarchical video structure, and presents the system, which construct the clustering-based video hierarchy, which facilitate users by browsing the summary and do a random access to the video content. Instead of using a single feature and domain-specific thresholds, we use multiple features that have complementary relationship for each other and clustering-based methods that use normalization so as to interact with users minimally. The stage of shot boundary detection extracts multiple features, performs the adaptive filtering process for each features to enhance the performance by eliminating the false factors, and does k-means clustering with two classes. The shot list of a result after the proposed procedure is represented as the video hierarchy by the intelligent unsupervised clustering technique. We experimented the static and the dynamic movie videos that represent characteristics of various video types. In the result of shot boundary detection, we had almost more than 95% good performance, and had also rood result in the video hierarchy.

  • PDF

Process Development for Optimizing Sensor Placement Using 3D Information by LiDAR (LiDAR자료의 3차원 정보를 이용한 최적 Sensor 위치 선정방법론 개발)

  • Yu, Han-Seo;Lee, Woo-Kyun;Choi, Sung-Ho;Kwak, Han-Bin;Kwak, Doo-Ahn
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.2
    • /
    • pp.3-12
    • /
    • 2010
  • In previous studies, the digital measurement systems and analysis algorithms were developed by using the related techniques, such as the aerial photograph detection and high resolution satellite image process. However, these studies were limited in 2-dimensional geo-processing. Therefore, it is necessary to apply the 3-dimensional spatial information and coordinate system for higher accuracy in recognizing and locating of geo-features. The objective of this study was to develop a stochastic algorithm for the optimal sensor placement using the 3-dimensional spatial analysis method. The 3-dimensional information of the LiDAR was applied in the sensor field algorithm based on 2- and/or 3-dimensional gridded points. This study was conducted with three case studies using the optimal sensor placement algorithms; the first case was based on 2-dimensional space without obstacles(2D-non obstacles), the second case was based on 2-dimensional space with obstacles(2D-obstacles), and lastly, the third case was based on 3-dimensional space with obstacles(3D-obstacles). Finally, this study suggested the methodology for the optimal sensor placement - especially, for ground-settled sensors - using the LiDAR data, and it showed the possibility of algorithm application in the information collection using sensors.

Hyperspectral Imaging Information System for Analyzing the Urchin Barren Phenomenon to Ensure the Safety of Seaweed-Derived Biomass (해조류 유래 바이오매스 안전성 확보를 위한 갯녹음 현상 분석 초분광영상 정보 시스템)

  • Yong-Suk Kim;Sang-Mok Chang
    • Clean Technology
    • /
    • v.30 no.3
    • /
    • pp.175-187
    • /
    • 2024
  • Seaweeds are widely distributed along national coastlines around the world, and the biomass derived from them is an important marine biological organism. Seaweed is a crucial component of a healthy marine ecosystem. However, changes in marine environments have led to the occurrence of urchin barrens, and the damage caused by this phenomenon is steadily increasing. As a result, investigations into the distribution and spread of urchin barrens in the coastal areas of South Korea are being conducted regularly so efficient detection technologies are essential. One of the technologies that can swiftly and accurately analyze extensive areas is detection technology based on hyperspectral image information systems. This study aims to present the latest hyperspectral imaging technology for investigating the current status of urchin barrens and the methods for classifying this technology, including principles, preprocessing techniques, and correction methods. This study also proposes a classification technique for urchin barrens along the coast of Jeju Island that uses hyperspectral images and categorizes the urchin barrens into initial, intermediate, and advanced stages. The results showed that approximately 17.5% of the experimental areas were in the advanced stage. Based on this, various management and restoration methods tailored to different categories of urchin barren can be proposed.

Alternative Tracing Method for Moving Object Using Reference Template in Real-time Image - Focusing on Parking Management System (참조 템플릿 기반 실시간 이동체 영상을 이용한 대안적 탐지 방안 - 주차관리시스템을 대상으로)

  • Joo, Yong Jin;Kang, Lee Seul;Hahm, Chang Hahk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.5
    • /
    • pp.495-503
    • /
    • 2014
  • As the number of vehicles has been sharply increases, the significance of safety and effective operation issues in the parking lot is being emphasized, which takes a part of the transportation system. Recently, there have been several studies for the parking management by detecting moving object, however, recognizing numbers of fast-moving vehicles simultaneously in the picture is still a challenging problem. The parking lot in public area, or large-sized buildings has clear parking section, whereas the sensor system is configured to monitor a plurality of parking spaces. Therefore, by considering those parking lots, we suggested to develop the real-time parking availability information system by applying the real-time image processing techniques. with the help of template matching. Following the study, we wanted to provide the alternative method for parking management system through the reference template makers by recognizing movements of parked vehicles with the size and shape, regardless of direct detecting of driving movements. In addition, we evaluated the applicability and performances of the information system, presented in this study, and implemented a prototype system to simulate the parking statuses of each floor. In fat, it was possible to manage and analyze statistics about the total number of parking spaces and the number of vehicles parked through real-time video flames. We expected that the result of the study will be advanced, following the user-friendliness and cost reduction in operating parking management system and giving information by efficient analysis of parking situation.

Reduction of Radiographic Quantum Noise Using Adaptive Weighted Median Filter (적응성 가중메디안 필터를 이용한 방사선 투과영상의 양자 잡음 제거)

  • Lee, Hoo-Min;Nam, Moon-Hyon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.5
    • /
    • pp.465-473
    • /
    • 2002
  • Images are easily corrupted by noise during the data transmission, data capture and data processing. A technical method of noise analyzing and adaptive filtering for reducing of quantum noise in radiography is presented. By adjusting the characteristics of the filter according to local statistics around each pixel of the image as moving windowing, it is possible to suppress noise sufficiently while preserve edge and other significant information required in reading. We have proposed adaptive weighted median(AWM) filters based on local statistics. We show two ways of realizing the AWM filters. One is a simple type of AWM filter, whose weights are given by a simple non-linear function of three local characteristics. The other is the AWM filter which is constructed by homogeneous factor(HF). Homogeneous factor(HF) from the quantum noise models that enables the filter to recognize the local structures of the image is introduced, and an algorithm for determining the HF fitted to the detection systems with various inner statistical properties is proposed. We show by the experimented that the performances of proposed method is superior to these of other filters and models in preserving small details and suppressing the noise at homogeneous region. The proposed algorithms were implemented by visual C++ language on a IBM-PC Pentium 550 for testing purposes, the effects and results of the noise filtering were proposed by comparing with images of the other existing filtering methods.

Performance Testing of Satellite Image Processing based on OGC WPS 2.0 in the OpenStack Cloud Environment (오픈스택 클라우드 환경 OGC WPS 2.0 기반 위성영상처리 성능측정 시험)

  • Yoon, Gooseon;Kim, Kwangseob;Lee, Kiwon
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.6
    • /
    • pp.617-627
    • /
    • 2016
  • Many kinds of OGC-based web standards have been utilized in the lots of geo-spatial application fields for sharing and interoperable processing of large volume of data sets containing satellite images. As well, the number of cloud-based application services by on-demand processing of virtual machines is increasing. However, remote sensing applications using these two huge trends are globally on the initial stage. This study presents a practical linkage case with both aspects of OGC-based standard and cloud computing. Performance test is performed with the implementation result for cloud detection processing. Test objects are WPS 2.0 and two types of geo-based service environment such as web server in a single core and multiple virtual servers implemented on OpenStack cloud computing environment. Performance test unit by JMeter is five requests of GetCapabilities, DescribeProcess, Execute, GetStatus, GetResult in WPS 2.0. As the results, the performance measurement time in a cloud-based environment is faster than that of single server. It is expected that expansion of processing algorithms by WPS 2.0 and virtual processing is possible to target-oriented applications in the practical level.