• 제목/요약/키워드: Image characteristics and dose evaluation

검색결과 20건 처리시간 0.021초

흉부 Phantom을 이용한 Low Dose CT의 관전압과 ASIR(Adaptive Statistical Iterative Reconstruction)적용에 따른 영상평가 및 피폭선량에 관한 연구 (A study of image evaluation and exposure dose with the application of Tube Voltage and ASIR of Low dose CT Using Chest Phantom)

  • 황혜성;김누리;정윤지;구은회;김기정
    • 대한디지털의료영상학회논문지
    • /
    • 제16권2호
    • /
    • pp.9-14
    • /
    • 2014
  • Purpose: The purpose of this study has attempted to evaluate and compare the image evaluation and exposure dose by respectively applying Filtered Back Projection(FBP), the existing test method, and Adaptive Statistical Iterative Reconstruction(ASIR) with different values of tube voltage during the Low Dose Computed Tomography(LDCT). Materials and Methods: With the image reconstruction method as basis, Chest Phantom was utilized with the FBP and ASIR set at 10%, 20% respectively, and the change of Tube Voltage (100kVp, 120kVp). For image evaluation, Back ground noise, Signal to Noise ratio(SNR) and Contrast to Noise ratio(CNR) were measured, and, for dose evaluation, CTDIvol and DLP were measured respectively. The statistical analysis was tested with SPSS(ver. 22.0), followed by ANOVA Test conducted after normality test and homogeneity test. (p<0.05). Results: In terms of image evaluation, there was no outstanding difference in Ascending Aorta(AA) SNR and Infraspinatus Muscle(IM) SNR with the different values of ASIR application(p<0.05), but a significant difference with the different amount of tube voltage(p>0.05). Also, there wasn't noticeable change in CNR with ASIR and different amount of Tube Voltage (p<0.05). However, in terms of dose evaluation, CTDIvol and DLP showed contrasting results(p<0.05). In terms of CTDIvol, the measured values with the same tube voltage of 120kVp were 2.6mGy with No-ASIR and 2.17mGy with 20%-ASIR respectively, decreased by 0.43mGy, and the values with 100kVp were 1.61mGy with No-ASIR and 1.34mGy with 20%-ASIR, decreased by 0.27mGy. In terms of DLP, the measured values with 120kVp were $103.21mGy{\cdot}cm$ with No-ASIR and $85.94mGy{\cdot}cm$ with 20%-ASIR, decreased by $17.27mGy{\cdot}cm$(about 16.7%), and the values with 100kVp were $63.84mGy{\cdot}cm$ with No-ASIR and $53.25mGy{\cdot}cm$ with 20%-ASIR, a decrease by $10.62mGy{\cdot}cm$(about 16.7%). Conclusion: At lower tube voltage, the rate of dose significantly decreased, but the negative effects on image evaluation was shown due to the increase of noise. For the future, through the result of the experiment, it is considered that the method above would be recommended for follow-up patients or those who get health checkup as long as there is no interference on the process of diagnosis due to the characteristics of Low Dose examination.

  • PDF

흉부 디지털 단층영상합성 시스템의 영상 재구성 알고리즘 개발 및 선량과 화질 평가 (Development of Image Reconstruction Algorithm for Chest Digital Tomosynthesis System (CDT) and Evaluation of Dose and Image Quality)

  • 김민경;곽형주;김종훈;최원호;하연경;이소정;김대호;이용구;이영진
    • 전자공학회논문지
    • /
    • 제53권9호
    • /
    • pp.143-147
    • /
    • 2016
  • 최근 디지털 단층영상합성 시스템 (digital tomosynthesis system, DTS)은 일반 X-ray의 영상 중첩현상과 전산화단층촬영장치 (computed tomography, CT)의 높은 선량의 문제점을 해결하기 위하여 개발되었다. 본 연구의 목적은 흉부 촬영용 디지털 단층영상합성 시스템 (chest digital tomosynthesis, CDT)의 재구성 알고리즘 개발 및 화질과 선량 평가를 수행하는 것이다. 영상의 재구성은 필터 후 역투영 (filtered back-projection, FBP)을 모델링하였고, 팬텀 영상을 획득하기 위한 X-선과 검출기 사이의 각도를 ${\pm}10^{\circ}$, ${\pm}15^{\circ}$, ${\pm}20^{\circ}$, 그리고 ${\pm}30^{\circ}$로 구성하였다. 영상의 화질 평가는 평균 제곱근 편차 (root mean square error, RMSE)와 신호대 잡음 변화율 (signal difference-to-noise ratio, SDNR)로 수행하였고, 선량 평가는 ${\pm}20^{\circ}$의 범위에서 유효선량으로 수행하였다. 결과적으로, 모든 각도에서 Slice thickness 필터를 적용한 팬텀영상이 가장 우수한 RMSE와 SDNR 결과를 나타내었고, 최종 유효 선량은 0.166 mSv로 측정되었다. 결론적으로, 개발한 CDT 재구성 알고리즘의 유용성을 증명하였고, 최종 유효 선량을 측정하여 CDT의 기초 실험 데이터를 구축할 수 있었다.

디지털방사선시스템에서 IEC표준을 이용한 방사선 영상 품질의 평가 (Evaluation of Image Quality for Radiographic Positioning using IEC Radiation Quality in the Digital Radiography System)

  • 안현;김창수;김정훈
    • 한국콘텐츠학회논문지
    • /
    • 제15권7호
    • /
    • pp.289-299
    • /
    • 2015
  • 본 연구의 목적은 디지털방사선시스템의 영상 품질을 비교하고 평가함에 있다. 영상의 정량적인 분해능을 나타내는 변조전달함수, 노이즈 특성을 나타내는 잡음력 스펙트럼을 이용하여 영상 품질평가를 하였다. IEC61267 선질을 사용하여 IEC62220-1에서 제시하는 기하학적인 조건과 실제 임상에서 사용되어지는 기하학적인 조건을 사용하여 부가필터 및 그리드, 임상선량을 이용하여 edge 팬텀을 사용하여 MTF값을 측정하였다. Grid, Filter, SID, kVp, mAs에 따른 MTF 결과는 임상조건 100, 180cm 와 IEC62220-1 기하학적인 조건 150cm에서 MTF 공간주파수 측정값은 비슷하게 나타났으며, 오히려 임상조건 100, 180cm에서 공간주파수가 높은 경우도 있었다. NPS 결과는 선량이 증가함에 따라 감소함을 나타내었다. IEC61267 선질을 이용한 영상품질평가에서는 IEC62220-1기하학적인 조건을 이용한 품질평가보다 임상조건 기하학적인 조건을 사용한 영상의 품질이 좋았다. IEC 와 임상조건에서의 MTF와 NPS는 크게 차이가 나지 않았음을 알 수 있었다. 그러므로 향후 IEC 표준에서 제시하는 영상품질 평가보다는 임상 조건을 적용한 영상품질 평가방법을 적용하기 위해서 부가필터사용 유 무, 그리드사용 유 무, SID변화, 선질, 선량 등의 파라메터를 적절히 이용하여 가장 적은 선량으로 공간분해능이 좋고, NPS가 감소하는 방법들을 찾는다면 향후 실제 임상에서 사용되고 있는 디지털방사선시스템을 최적의 품질로 유지할 수 있는 참고 자료로 활용될 수 있을 것으로 사료된다.

필름배지선량계에 의한 개인피폭선량 측정에 관한 연구 (A Study on the Measurement of the Personal Exposure Dose by Film Badge Dosimeter)

  • 정운관
    • Journal of Radiation Protection and Research
    • /
    • 제19권1호
    • /
    • pp.37-50
    • /
    • 1994
  • X-선과 감마선의 에너지에 따른 선질특성과 선량 및 필름의 사진농도와의 관계를 이용한 필름배지선량계의 선량환산식을 실험적으로 체계화 하였고, 시간경과에 따른 잠상퇴행 특성과 방사선의 입사방향에 따른 방향특성을 실험적으로 조사하여 보정계수를 산출하였다. 본 연구에서 구한 선량환산식은 필름배지선량계의 기술기준인 성능판정 기준을 잘 만족시키는 것으로 나타났다.

  • PDF

적외선 열영상을 이용한 가시광 통신모듈의 고선량 감마선조사에 따른 열화 분석 (Analysis of Visible Light Communication Module Degraded by High Dose-Rate Gamma Irradiation using Thermal Infrared Image)

  • 조재완;홍석붕;구인수
    • 제어로봇시스템학회논문지
    • /
    • 제17권12호
    • /
    • pp.1203-1209
    • /
    • 2011
  • In this paper, the degradation evaluation method of VLC (Visible Light Communication) wireless module after high dose rate gamma-ray irradiation using the thermal infrared camera is proposed. First, the heating characteristics of the active devices embedded in the VLC wireless module during the condition of normal operation is monitored by thermal infrared camera. By the image processing technique, the trends of the intensity of the heat emitted by the active devices are calculated and stored. The feature of the blob area including the area of the active devices in the thermal infrared image is extracted and stored. The feature used in this paper is the mean value of the gray levels in the blob area. The same VLC module has been gamma irradiated at the dose rate of about 4.0 kGy/h during 72 hours up to a total dose of 288 kGy. And then, the heating characteristics of the active devices embedded in the VLC wireless module after high dose gamma ray irradiation is observed by thermal infrared camera. The high dose gamma-ray induced degradation of the active devices embedded in the VLC module was evaluated by comparing the mean value of the blob area to the one of the same blob area of the VLC module before the gamma ray irradiation.

Low-dose CT Image Denoising Using Classification Densely Connected Residual Network

  • Ming, Jun;Yi, Benshun;Zhang, Yungang;Li, Huixin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권6호
    • /
    • pp.2480-2496
    • /
    • 2020
  • Considering that high-dose X-ray radiation during CT scans may bring potential risks to patients, in the medical imaging industry there has been increasing emphasis on low-dose CT. Due to complex statistical characteristics of noise found in low-dose CT images, many traditional methods are difficult to preserve structural details effectively while suppressing noise and artifacts. Inspired by the deep learning techniques, we propose a densely connected residual network (DCRN) for low-dose CT image noise cancelation, which combines the ideas of dense connection with residual learning. On one hand, dense connection maximizes information flow between layers in the network, which is beneficial to maintain structural details when denoising images. On the other hand, residual learning paired with batch normalization would allow for decreased training speed and better noise reduction performance in images. The experiments are performed on the 100 CT images selected from a public medical dataset-TCIA(The Cancer Imaging Archive). Compared with the other three competitive denoising algorithms, both subjective visual effect and objective evaluation indexes which include PSNR, RMSE, MAE and SSIM show that the proposed network can improve LDCT images quality more effectively while maintaining a low computational cost. In the objective evaluation indexes, the highest PSNR 33.67, RMSE 5.659, MAE 1.965 and SSIM 0.9434 are achieved by the proposed method. Especially for RMSE, compare with the best performing algorithm in the comparison algorithms, the proposed network increases it by 7 percentage points.

s-IGDT 시스템의 X-선원 배열 형태 및 투영상 개수에 따른 영상 화질 평가에 관한 연구 (Image Quality Evaluation according to X-ray Source Arrangement Type and the Number of Projections in a s-IGDT System)

  • 이다혜;남기복;이승완
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제45권2호
    • /
    • pp.117-125
    • /
    • 2022
  • Although stationary inverse-geometry digital tomosynthesis (s-IGDT) is able to reduce motion artifacts, image acquisition time and radiation dose, the image quality of the s-IGDT is degraded due to the truncations arisen in projections. Therefore, the effects of geometric and image acquisition conditions in the s-IGDT should be analyzed for improving the image quality and clinical applicability of the s-IGDT system. In this study, the s-IGDT images were obtained with the various X-ray source arrangement types and the various number of projections. The resolution and noise characteristics of the obtained s-IGDT images were evaluated, and the characteristics were compared with those of the conventional DT images. The s-IGDT system using linear X-ray source arrangement and 40 projections maximized the image characteristics of resolution and noise, and the corresponding system was superior to the conventional DT system in terms of image resolution. In conclusion, we expect that the s-IGDT system can be used for providing medical images in diagnosis.

CareDose 4D 사용 시 동일한 스캔조건에서 조직기반설정을 다르게 적용함에 따른 선량 비교: 성인과 소아팬텀 연구 (Radiation Dose Comparison according to Different Organ Characteristics at Same Scan Parameters Using CareDose 4D: An Adult and Pediatric Phantom Evaluation)

  • 공효금;이기백
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제42권4호
    • /
    • pp.271-277
    • /
    • 2019
  • CareDose 4D which is the Siemens's Automatic Exposure Control (AEC) can adjust the level of radiation dose distribution which is based on organ characteristic unlike other manufacturer's AEC. Currently, a wide scan range containing different organs is sometimes examined at once (defined as one scan). The purpose of this study was to figure out which organ characteristic option is suitable when one scan method is utilized. Two types of anthropomorphic phantoms were scanned in the same range which were from frontal bone to carina level according to three different organ characteristics such as Thorax, Abdomen, and Neck. All scans and image reconstruction parameters were equally applied and radiation dose were compared. Radiation dose with Thorax organ characteristic was lower than that with Neck. Also, that with Abdomen oran characteristic was lower than Thorax. There were significant differences in radiation dose according to different organ characteristics at the same parameters (P<0.05). Usage of Neck organ characteristic had a result of the highest radiation dose to all phantom. On the other hand, utilization of Abdomen organ characteristic showed the lowest radiation dose. As a result, it is desirable to set appropriate organ characteristic according to examined body part when you checkup patients. Also, when you implement one scan method, selection of Abdomen-based organ characteristic has reduced more radiation dose compared with two different organ characteristic.

Development of Diode Based High Energy X-ray Spatial Dose Distribution Measuring Device

  • Lee, Jeonghee;Kim, Ikhyun;Park, Jong-Won;Lim, Yong-Kon;Moon, Myungkook;Lee, Sangheon;Lim, Chang Hwy
    • Journal of Radiation Protection and Research
    • /
    • 제43권3호
    • /
    • pp.97-106
    • /
    • 2018
  • Background: A cargo container scanner using a high-energy X-ray generates a fan beam X-ray to acquire a transmitted image. Because the generated X-rays by LINAC may affect the image quality and radiation protection of the system, it is necessary to acquire accurate information about the generated X-ray beam distribution. In this paper, a diode-based multi-channel spatial dose measuring device for measuring the X-ray dose distribution developed for measuring the high energy X-ray beam distribution of the container scanner is described. Materials and Methods: The developed high-energy X-ray spatial dose distribution measuring device can measure the spatial distribution of X-rays using 128 diode-based X-ray sensors. And precise measurement of the beam distribution is possible through automatic positioning in the vertical and horizontal directions. The response characteristics of the measurement system were evaluated by comparing the signal gain difference of each pixel, response linearity according to X-ray incident dose change, evaluation of resolution, and measurement of two-dimensional spatial beam distribution. Results and Discussion: As a result, it was found that the difference between the maximum value and the minimum value of the response signal according to the incident position showed a difference of about 10%, and the response signal was linearly increased. And it has been confirmed that high-resolution and two-dimensional measurements are possible. Conclusion: The developed X-ray spatial dose measuring device was evaluated as suitable for dose measurement of high energy X-ray through confirmation of linearity of response signal, spatial uniformity, high resolution measuring ability and ability to measure spatial dose. We will perform precise measurement of the X-ray beamline in the container scanning system using the X-ray spatial dose distribution measuring device developed through this research.

MLO View의 유방촬영에서 QC 프로그램을 이용한 선량 및 영상 평가 (Evaluation of Radiation Dose and Imaging of the QC Program in Mammography MLO View)

  • 이선화;김정민;권대철
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제38권3호
    • /
    • pp.221-228
    • /
    • 2015
  • 목적: 디지털 유방촬영에서 QC 프로그램을 이용하여 방사선 피폭 선량의 감소와 고화질의 영상을 목적으로 하였다. 재료 및 방법: 디지털 유방촬영술에서 QC phantom을 사용하여 노출 방식에 따른 평균유선선량을 MLO view에서 $0^{\circ}C$, $30^{\circ}C$, $45^{\circ}C$, $50^{\circ}C$, $55^{\circ}C$, $70^{\circ}C$, $90^{\circ}C$ 구간에서 측정하였고, Hologic사의 QC 프로그램으로 영상에서 SNR과 CNR을 측정하여 평가하였다. 결과: 평균유선선량은 $90^{\circ}C$ 일 때 1.75 mGy로 최대치였고, $45^{\circ}C$에서 약 6 % 감소한 1.65 mGy 측정되었다. 또한 auto filter에서 1.67 mGy, manual에서는 1.52 mGy의 평균유선선량을 기록하여 노출 방식에 따라 선량이 차이가 있었다. 화질평가의 모든 각도 구간에서 SNR 50~52, CNR 11~12로 근소한 차이를 나타내고, 제조사의 권고치 내에 포함되었다. 결론: MLO view $45^{\circ}C$에서 가장 적은 선량이었고, SNR 및 CNR의 차이는 미미하였다. 이때의 노출방식은 환자의 체형이나 특성을 고려한 설정으로 차이를 두어 불필요한 환자의 피폭 선량을 줄이기 위한 방법이 필요하다.