• 제목/요약/키워드: Image caption

검색결과 51건 처리시간 0.023초

비디오 자막 추출 및 이미지 향상에 관한 연구 (Video Caption Extraction and Image Enhancement)

  • 김소명;최영우;정규식
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 가을 학술발표논문집 Vol.27 No.2 (2)
    • /
    • pp.359-361
    • /
    • 2000
  • 본 논문에서는 비디오 자막 이미지를 인식하기 위해 필요한 영상 향상의 단계로서 다중 결합을 적용한다. 또한 다중 결합을 위한 동일한 자막의 판단 및 결합된 결과를 재평가하기 위한 방법을 제안한다. 입력된 칼라 이미지로부터 RLS(Run Length Smearing)가 적용된 에지 이미지를 얻고, 수직 및 수평 히스토그램 분포를 이용하여 자막과 자막 영역에 대한 정보를 추출한다. 프레임 내의 자막 영역의 중첩 정도를 이용하여 동일 자막을 판단하고, 동일한 자막을 갖는 프레임들끼리 다중 결합을 수행함으로써 향상된 이미지를 얻는다. 끝으로 결합된 영상에 대한 평가를 수행하여 잘못 결합된 이미지들로 인한 오류를 해결하고 재평가한다. 제안한 방법을 통해, 배경 부분의 잡영이 완화된 자막 이미지를 추출하여 인식의 정확성과 신뢰성을 높일 수 있었다. 또한 동일한 자막의 시작 프레임과 끝 프레임의 위치 파악은 디지털 비디오의 색인 및 검색에 효과적으로 이용될 수 있을 것이다.

  • PDF

내용에 기반한 이미지 인덱싱 방법에 관한 연구 (A Study on Image Indexing Method based on Content)

  • 유원경;정을윤
    • 한국정보처리학회논문지
    • /
    • 제2권6호
    • /
    • pp.903-917
    • /
    • 1995
  • 대부분의 데이타베이스 시스템에서, 이미지는 캡션(caption), 주석(annotation), 속성(attribute)과 같이 그 이미지와 관련된 텍스트를 이용하여 간접적으로 인덱스 되었다. 그러나, 이미지에 포함된 정보를 직접적으로 사용하여 내용에 기반한 이미 지의 저장과 검색을 지원하는 이미지 데이타베이스 시스템의 요구가 점점 증가하고 있다. 내용에 기반한 몇몇 인덱싱 방법들이 있는데 그중에서 Petrakis는 이미지를 구성하는 오브젝트들의 공간관계와 속성을 고려한 이미지 인덱싱 방법을 제안했다. 이것은'2-D string'에 기반한 인덱싱 연구의 확장인데. 이 방법은 많은 저장공간을 필요로 하며 융통성이 부족하다. 본 논문은 페이징 기법을 사용하는 kd-trr를 이용한 인덱스 화일구조를 제안한다. 그리고 정규화 과정을 사용해서 실제 이미지로부터 키를 추출하는 예를 보이고 시뮬레이션을 통해 비교하였다. 실험 결과는 제안된 방법이 훨씬 적은 저장공간을 요구하고, 융통성면에서 개선이 되었음을 보여준다.

  • PDF

전문성 이식을 통한 딥러닝 기반 전문 이미지 해석 방법론 (Deep Learning-based Professional Image Interpretation Using Expertise Transplant)

  • 김태진;김남규
    • 지능정보연구
    • /
    • 제26권2호
    • /
    • pp.79-104
    • /
    • 2020
  • 최근 텍스트와 이미지 딥러닝 기술의 괄목할만한 발전에 힘입어, 두 분야의 접점에 해당하는 이미지 캡셔닝에 대한 관심이 급증하고 있다. 이미지 캡셔닝은 주어진 이미지에 대한 캡션을 자동으로 생성하는 기술로, 이미지 이해와 텍스트 생성을 동시에 다룬다. 다양한 활용 가능성 덕분에 인공지능의 핵심 연구 분야 중 하나로 자리매김하고 있으며, 성능을 다양한 측면에서 향상시키고자 하는 시도가 꾸준히 이루어지고 있다. 하지만 이처럼 이미지 캡셔닝의 성능을 고도화하기 위한 최근의 많은 노력에도 불구하고, 이미지를 일반인이 아닌 분야별 전문가의 시각에서 해석하기 위한 연구는 찾아보기 어렵다. 동일한 이미지에 대해서도 이미지를 접한 사람의 전문 분야에 따라 관심을 갖고 주목하는 부분이 상이할 뿐 아니라, 전문성의 수준에 따라 이를 해석하고 표현하는 방식도 다르다. 이에 본 연구에서는 전문가의 전문성을 활용하여 이미지에 대해 해당 분야에 특화된 캡션을 생성하기 위한 방안을 제안한다. 구체적으로 제안 방법론은 방대한 양의 일반 데이터에 대해 사전 학습을 수행한 후, 소량의 전문 데이터에 대한 전이 학습을 통해 해당 분야의 전문성을 이식한다. 또한 본 연구에서는 이 과정에서 발생하게 되는 관찰간 간섭 문제를 해결하기 위해 '특성 독립 전이 학습' 방안을 제안한다. 제안 방법론의 실현 가능성을 파악하기 위해 MSCOCO의 이미지-캡션 데이터 셋을 활용하여 사전 학습을 수행하고, 미술 치료사의 자문을 토대로 생성한 '이미지-전문 캡션' 데이터를 활용하여 전문성을 이식하는 실험을 수행하였다. 실험 결과 일반 데이터에 대한 학습을 통해 생성된 캡션은 전문적 해석과 무관한 내용을 다수 포함하는 것과 달리, 제안 방법론에 따라 생성된 캡션은 이식된 전문성 관점에서의 캡션을 생성함을 확인하였다. 본 연구는 전문 이미지 해석이라는 새로운 연구 목표를 제안하였고, 이를 위해 전이 학습의 새로운 활용 방안과 특정 도메인에 특화된 캡션을 생성하는 방법을 제시하였다.

텍스트 정보와 시각 특징 정보를 이용한 효과적인 웹 이미지 캡션 추출 방법 (An Efficient Web Image Caption Extraction Method based on Textual and Visual Information)

  • 황지익;박주현;낭종호
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 한국컴퓨터종합학술대회 논문집 Vol.33 No.1 (B)
    • /
    • pp.346-348
    • /
    • 2006
  • 기존의 웹 이미지 검색 시스템들은 웹 페이지에 포함된 텍스트들의 출현빈도, 태그유형 등을 고려해 각 키워드들의 중요도를 평가하고 이를 이용해 이미지의 캡션을 결정한다. 하지만 텍스트 정보만으로 캡션을 결정할 경우, 키워드와 이미지 사이의 관련성을 평가할 수 없어 부적절한 캡션의 배제가 어렵고, 사람의 인지와 맞지 않는 캡션이 추출되는 문제점이 있다. 본 논문에서는 기존의 웹 이미지 마이닝 방법을 통해 웹 페이지로부터 캡션 후보 키워드를 추출하고, 자동 이미지 주석 방법을 통해 이미지의 개념 부류 키워드를 결정한 후, 두 종류의 키워드를 결할하여 캡션을 선택한다. 가능한 결합 방법으로는 키워드 병합 방법, 공통 키워드 추출 방법, 개념 부류 필터링 방범 캡션 후보 필터링 방법 등이 있다. 실험에 의하면 키워드 병합 방법은 높은 재현율을 가져 이미지에 대한 다양한 주석이 가능하고 공통 키워드 추출 방법과 개넘 부류 키워드 필터링 방법은 정확률이 높아 이미지에 대한 정확한 기술이 가능하다. 특히, 캡션 후보 키워드 필터링 방법은 기존의 방법에 비해 우수한 재현율과 정확률을 가지므로 기존의 방법에 비해 적은 개수의 캡션으로도 이미지를 정확하게 기술할 수 있으며 일반적인 웹 이미지 검색 시스템에 적용할 경우 효과적인 방법이다.

  • PDF

Show, Attend and Tell 모델을 이용한 한국어 캡션 생성 (Korean Image Caption Generator Based on Show, Attend and Tell Model)

  • 김다솔;이계민
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 추계학술대회
    • /
    • pp.258-261
    • /
    • 2022
  • 최근 딥러닝 기술이 발전하면서 이미지를 설명하는 캡션을 생성하는 모델 또한 발전하였다. 하지만 기존 이미지 캡션 모델은 대다수 영어로 구현되어있어 영어로 캡션을 생성하게 된다. 따라서 한국어 캡션을 생성하기 위해서는 영어 이미지 캡션 결과를 한국어로 번역하는 과정이 필요하다는 문제가 있다. 이에 본 연구에서는 기존의 이미지 캡션 모델을 이용하여 한국어 캡션을 직접 생성하는 모델을 만들고자 한다. 이를 위해 이미지 캡션 모델 중 잘 알려진 Show, Attend and Tell 모델을 이용하였다. 학습에는 MS-COCO 데이터의 한국어 캡션 데이터셋을 이용하였다. 한국어 형태소 분석기를 이용하여 토큰을 만들고 캡션 모델을 재학습하여 한국어 캡션을 생성할 수 있었다. 만들어진 한국어 이미지 캡션 모델은 BLEU 스코어를 사용하여 평가하였다. 이때 BLEU 스코어를 사용하여 생성된 한국어 캡션과 영어 캡션의 성능을 평가함에 있어서 언어의 차이에 인한 결과 차이가 발생할 수 있으므로, 영어 이미지 캡션 생성 모델의 출력을 한국어로 번역하여 같은 언어로 모델을 평가한 후 최종 성능을 비교하였다. 평가 결과 한국어 이미지 캡션 생성 모델이 영어 이미지 캡션 생성 모델을 한국어로 번역한 결과보다 좋은 BLEU 스코어를 갖는 것을 확인할 수 있었다.

  • PDF

멀티모달 딥 러닝 기반 이상 상황 탐지 방법론 (Anomaly Detection Methodology Based on Multimodal Deep Learning)

  • 이동훈;김남규
    • 지능정보연구
    • /
    • 제28권2호
    • /
    • pp.101-125
    • /
    • 2022
  • 최근 컴퓨팅 기술의 발전과 클라우드 환경의 개선에 따라 딥 러닝 기술이 발전하게 되었으며, 다양한 분야에 딥 러닝을 적용하려는 시도가 많아지고 있다. 대표적인 예로 정상적인 데이터에서 벗어나는 값이나 패턴을 식별하는 기법인 이상 탐지가 있으며, 이상 탐지의 대표적 유형인 점 이상, 집단적 이상, 맥락적 이중 특히 전반적인 상황을 파악해야 하는 맥락적 이상을 탐지하는 것은 매우 어려운 것으로 알려져 있다. 일반적으로 이미지 데이터의 이상 상황 탐지는 대용량 데이터로 학습된 사전학습 모델을 사용하여 이루어진다. 하지만 이러한 사전학습 모델은 이미지의 객체 클래스 분류에 초점을 두어 생성되었기 때문에, 다양한 객체들이 만들어내는 복잡한 상황을 탐지해야 하는 이상 상황 탐지에 그대로 적용되기에는 한계가 있다. 이에 본 연구에서는 객체 클래스 분류를 학습한 사전학습 모델을 기반으로 이미지 캡셔닝 학습을 추가적으로 수행하여, 객체 파악뿐만 아니라 객체들이 만들어내는 상황까지 이해해야 하는 이상 상황 탐지에 적절한 2 단계 사전학습 모델 구축 방법론을 제안한다. 구체적으로 제안 방법론은 ImageNet 데이터로 클래스 분류를 학습한 사전학습 모델을 이미지 캡셔닝 모델에 전이하고, 이미지가 나타내는 상황을 설명한 캡션을 입력 데이터로 사용하여 학습을 진행한다. 이후 이미지와 캡션을 통해 상황 특질을 학습한 가중치를 추출하고 이에 대한 미세 조정을 수행하여 이상 상황 탐지 모델을 생성한다. 제안 방법론의 성능을 평가하기 위해 직접 구축한 데이터 셋인 상황 이미지 400장에 대해 이상 탐지 실험을 수행하였으며, 실험 결과 제안 방법론이 기존의 단순 사전학습 모델에 비해 이상 상황 탐지 정확도와 F1-score 측면에서 우수한 성능을 나타냄을 확인하였다.

DCT계수와 천이지도 분석을 이용한 개선된 영상 내 자막영역 검출방법 (An Improved Method for Detecting Caption in image using DCT-coefficient and Transition-map Analysis)

  • 안권재;주성일;김계영;최형일
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권4호
    • /
    • pp.61-71
    • /
    • 2011
  • 본 논문은 DCT계수와 천이지도 분석을 이용하여 영상 내 자막영역을 검출하는 방법에 대해 제안한다. 기존 DCT계수 분석방법을 이용한 문자영역탐지 방법은 검출률은 높으나 오검출률이 매우 높은 단점이 있고, 천이지도를 이용한문자영역 탐지 방법은 임계값이 정적이기때문에 문자영역 검증단계에서 실제문자영역이 기각되는 일이 빈번히 발생한다. 이러한 문제점을 해결하기 위해 DCT계수 분석방법을 이용하여 유망문자영역맵을 작성하고 이를 천이지도를 이용한 문자영역탐지 방법에 적용하여 임계값을 단계별로 정한다. 그 결과로서 DCT계수 분석을 이용한 문자영역검출방법에 비해 오검출률이 크게 감소하였으며, 기존 천이지도를 이용한 문자영역검출 방법보다 검출률이 크게 향상되었다.

사용자 정의 스토리 기반 콘텐츠 제작 서비스를 위한 오픈 시나리오 언어 구조 설계 (Design of OpenScenario Structure for Content Creation Service Based on User Defined Story)

  • 이혜주;권기룡;이석환;박윤경;문경덕
    • 한국멀티미디어학회논문지
    • /
    • 제19권2호
    • /
    • pp.170-179
    • /
    • 2016
  • It is a story-based content creation service that provides any user with some proper contents based on a story written by the user in order to utilize a lot of contents accumulated on Internet. For this service, the story has to be described in computer-readable representation. In this paper, analyzing the structure of scenario, as known as screenplay or scripts, a structure of story representation, which is referred to as OpenScenario, is defined. We intend users to produce their own contents by using massive contents on Internet by the proposed method. The proposed method's OpenScenario consists two main parts, OSD (OpenScenario Descriptors) which is a set of descriptors to describe various objects of shots such as visual, aural and textual objects and OSS (OpenScenario Scripts) which is a set of scripts to add some effects such as image, caption, transition between shots, and background music. As an usecase of proposed method, we describe how to create new content using OpenScenario and discuss some required technologies to apply the proposed method effectively.

청각장애인을 위한 동영상 이미지캡션 생성 소프트웨어 개발 (The Development of Image Caption Generating Software for Auditory Disabled)

  • 임경호;윤준성
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2007년도 학술대회 1부
    • /
    • pp.1069-1074
    • /
    • 2007
  • 청각장애인이 PC환경에서 영화, 방송, 애니메이션 등의 동영상 콘텐츠를 이용할 때 장애의 정도에 따라 콘텐츠의 접근성에 있어서 시각적 수용 이외의 부분적 장애가 발생한다. 이러한 장애의 극복을 위해 수화 애니메이션이나 독화 교육과 같은 청각장애인의 정보 접근성 향상을 위한 콘텐츠와 기술이 개발된 사례가 있었으나 다소 한계점을 가지고 있다. 따라서 본 논문에서는 현대 뉴미디어 예술 작품의 예술적 표현 방법을 구성요소로서 추출하여, 기술과 감성의 조화가 어우러진 독창적인 콘텐츠를 생산할 수 있는 기술을 개발함으로써 PC환경에서 청각장애인의 동영상 콘텐츠에 대한 접근성 향상 방법을 추출하고, 실질적으로 청각적 효과의 시각적 변환 인터페이스 개발 및 이미지 캡션 생성 소프트웨어 개발을 통해 청각장애인의 동영상 콘텐츠 사용성을 극대화시킬 수 있는 방법론을 제시하고자 한다. 본 논문에서는 첫째, 청각장애인의 동영상 콘텐츠 접근성 분석, 둘째, 미디어아트 작품의 선별적 분석 및 유동요소 추출, 셋째, 인터페이스 및 콘텐츠 제작의 순서로 단계별 방법론을 제시하고 있다. 이 세번 째 단계에서 이미지 캡션 생성 소프트웨어가 개발되고, 비트맵 아이콘 형태의 이미지 캡션 콘텐츠가 생성된다. 개발한 이미지 캡션 생성 소프트웨어는 사용성에 입각한 일상의 언어적 요소와 예술 작품으로부터 추출한 청각 요소의 시각적요소로의 전환을 위한 인터페이스인 것이다. 이러한 기술의 개발은 기술적 측면으로는 청각장애인의 다양한 웹콘텐츠 접근 장애를 개선하는 독창적인 인터페이스 추출 환경을 확립하여 응용영역을 확대하고, 공학적으로 단언된 기술 영역을 콘텐츠 개발 기술이라는 새로운 영역으로 확장함으로써 간학제적 시도를 통한 기술영역을 유기적으로 확대하며, 문자와 오디오를 이미지와 시각적 효과로 전환하여 다각적인 미디어의 교차 활용 방안을 제시하여 콘텐츠를 형상화시키는 기술을 활성화 시키는 효과를 거둘 수 있다. 또한 청각장애인의 접근성 개선이라는 한정된 영역을 뛰어넘어 국가간 언어적인 장벽을 초월할 수 있는 다각적인 부가 동영상 콘텐츠에 대한 시도, 접근, 생산을 통해 글로벌 시대에 부응하는 새로운 방법론으로 발전 할 수 있다.

  • PDF

통계적 분석 기반 불법 복제 비디오 영상 감식 방법 (A Novel Video Copy Detection Method based on Statistical Analysis)

  • 조혜정;김지은;손채봉;정광수;오승준
    • 방송공학회논문지
    • /
    • 제14권6호
    • /
    • pp.661-675
    • /
    • 2009
  • 인터넷과 멀티미디어 기술이 발달함에 따라 무분별한 불법 콘텐츠들의 유통으로 인한 저작권 침해가 심각한 사회적 문제로 대두되고 있어, 불법 복제 영상을 검출하는 시스템의 개발이 시급하다. 본 논문에서는 공간영역 상에서 다양하게 변형된 복제 영상과 원본 영상간의 통계적 특성을 이용하여 그 유사도를 측정하고 복제 여부를 판단하는 계층적 구조의 불법 비디오 감식 방법을 제안한다. 영상의 대표적 특성인 휘도 성분에 따라 순위를 매김으로써 공간적 변형에 영향을 받지 않도록 하였으며, 데이터베이스에 저장된 방대한 양의 영상들에 대한 검색시간과 계산량을 줄이기 위해 순위 표본 프레임을 이용하여 유사한 후보 영상군을 추출한다. 이러한 후보 영상군을 대상으로 일반적인 불법 복제 비디오의 형태를 감안하여 각 프레임의 가장자리에 위치한 검은색 영역을 제외함과 동시에 영상의 중앙 영역을 포함하여 통계 검정을 이용함으로써 복제 여부를 판단한다. 실험 결과, 제안하는 방법은 이전 방법에 비해 순위 표본 프레임의 정확도가 유사하면서 선택된 순위 표본 프레임 수가 약 61% 가량 적게 추출하여 특징 정보에 저장되는 메모리 양을 절약할 수 있었다. 또한 영상의 화질 열화, 대비 변형, 확대 및 축소, 화면비 변환, 자막 삽입 등 다양한 공간적 변형에도 포괄적으로 복제 여부를 판단할 수 있음을 실험을 통해 확인하였다.