• Title/Summary/Keyword: Image and microscope technology

Search Result 128, Processing Time 0.032 seconds

ELECTRO-MICROSCOPE BASED 3D PLANT CELL IMAGE PROCESSING METHOD

  • Lee, Choong-Ho;Umeda Mikio;Takesi Sugimoto
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.227-235
    • /
    • 2000
  • Agricultural products are easily deformable its shape because of some external forces. However, these force behavior is difficult to measure quantitatively. Until now, many researches on the mechanical property was performed with various methods such as material testing, chemical analysis and non-destructive methods. In order to investigate force behavior on the cellular unit of agricultural products, electro-microscope based 3D image processing method will contribute to analysis of plant cells behavior. Before image measurement of plant cells, plant sample was cut off cross-sectioned area in a size of almost 300-400 ${\mu}$ m units using the micron thickness device, and some of preprocessing procedure was performed with fixing and dyeing. However, the wall structure of plant cell is closely neighbor each other, it is necessary to separate its boundary pixel. Therefore, image merging and shrinking algorithm was adopted to avoid disconnection. After then, boundary pixel was traced through thinning algorithm. Each image from the electro-microscope has a information of x,y position and its height along the z axis cross sectioned image plane. 3D image was constructed using the continuous image combination. Major feature was acquired from a fault image and measured area, thickness of cell wall, shape and unit cell volume. The shape of plant cell was consist of multiple facet shape. Through this measured information, it is possible to construct for structure shape of unit plant cell. This micro unit image processing techniques will contribute to the filed of agricultural mechanical property and will use to construct unit cell model of each agricultural products and information of boundary will use for finite element analysis on unit cell image.

  • PDF

Variation of Camera Constant and Image Rotation in HU-125C Electron Microscope (HU-125C 전자현미경에 있어서 카메라 상수의 변화 및 상의 회전에 대한 조사)

  • Choi, Ju;Ye, Gil-Chon
    • Applied Microscopy
    • /
    • v.4 no.1
    • /
    • pp.1-4
    • /
    • 1974
  • Variations of camera constant due to the change of the lens current were examined for Hitachi HU-125C electron microscope. It was shown that the variation in specimen height had a marked effect on the change of camera constant. Also the rotation of the image from the diffraction pattern was determined by using a test crystal. Suggestions were given for improving practical operation of electron microscope in the work of thin foils.

  • PDF

Research on Reconstruction Technology of Biofilm Surface Based on Image Stacking

  • Zhao, Yuyang;Tao, Xueheng;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.11
    • /
    • pp.1472-1480
    • /
    • 2021
  • Image stacking technique is one of the key techniques for complex surface reconstruction. The process includes sample collection, image processing, algorithm editing, surface reconstruction, and finally reaching reliable conclusions. Since this experiment is based on laser scanning confocal microscope to collect the original contour information of the sample, it is necessary to briefly introduce the relevant principle and operation method of laser scanning confocal microscope. After that, the original image is collected and processed, and the data is expanded by interpolation method. Meanwhile, several methods of surface reconstruction are listed. After comparing the advantages and disadvantages of each method, one-dimensional interpolation and volume rendering are finally used to reconstruct the 3D model. The experimental results show that the final 3d surface modeling is more consistent with the appearance information of the original samples. At the same time, the algorithm is simple and easy to understand, strong operability, and can meet the requirements of surface reconstruction of different types of samples.

Application of Image Processing to Determine Size Distribution of Magnetic Nanoparticles

  • Phromsuwan, U.;Sirisathitkul, C.;Sirisathitkul, Y.;Uyyanonvara, B.;Muneesawang, P.
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.311-316
    • /
    • 2013
  • Digital image processing has increasingly been implemented in nanostructural analysis and would be an ideal tool to characterize the morphology and position of self-assembled magnetic nanoparticles for high density recording. In this work, magnetic nanoparticles were synthesized by the modified polyol process using $Fe(acac)_3$ and $Pt(acac)_2$ as starting materials. Transmission electron microscope (TEM) images of as-synthesized products were inspected using an image processing procedure. Grayscale images ($800{\times}800$ pixels, 72 dot per inch) were converted to binary images by using Otsu's thresholding. Each particle was then detected by using the closing algorithm with disk structuring elements of 2 pixels, the Canny edge detection, and edge linking algorithm. Their centroid, diameter and area were subsequently evaluated. The degree of polydispersity of magnetic nanoparticles can then be compared using the size distribution from this image processing procedure.

Deep Learning-based Automatic Wrinkles Segmentation on Microscope Skin Images for Skin Diagnosis (피부진단을 위한 딥러닝 기반 피부 영상에서의 자동 주름 추출)

  • Choi, Hyeon-yeong;Ko, Jae-pil
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.2
    • /
    • pp.148-154
    • /
    • 2020
  • Wrinkles are one of the main features of skin aging. Conventional image processing-based wrinkle detection is difficult to effectively cope with various skin images. In particular, Wrinkle extraction performance is significantly decreased when the wrinkles are not strong and similar to the surrounding skin. In this paper, deep learning is applied to extract wrinkles from microscopic skin images. In general, the microscope image is equipped with a wide-angle lens, so the brightness at the boundary area of the image is dark. In this paper, to solve this problem, the brightness of the skin image is estimated and corrected. In addition, We apply the structure of semantic segmentation network suitable for wrinkle extraction. The proposed method obtained an accuracy of 99.6% in test experiments on skin images collected in our laboratory.

Applications of the Scanning Electron Microscope (주사형(走査型) 전자현미경(電子顯微鏡)의 응용분야(應用分野))

  • Kim, Yong-Nak
    • Applied Microscopy
    • /
    • v.2 no.1
    • /
    • pp.39-46
    • /
    • 1972
  • There are many kinds of microscopes suitable for general studies; optical microscopes(OM), conventional transmission electron microscopes (TEM), and scanning electron microscopes(SEM). The optical microscopes and the conventional transmission electron microscopes are very familiar. The images of these microscopes are directly formed on an image plane with one or more image forming lenses. On the other hand, the image of the scanning electron microscope is formed on a fluorescent screen of a cathode ray tube using a scanning system similar to television technique. In this paper, the features and some applications of the scanning electron microscope will be discussed briefly. The recently available scanning electron microscope, combining a resolution of about $200{\AA}$ with great depth of field, is favorable when compared to the replica technique. It avoids the problem of specimen damage and the introduction of artifacts. In addition, it permits the examination of many samples that can not be replicated, and provides a broader range of information. The scanning electron microscope has found application in diverse fields of study including biology, chemistry, materials science, semiconductor technology, and many others. In scanning electron microscopy, the secondary electron method. the backscattererd electron method, and the electromotive force method are most widely used, and the transmitted electron method will become more useful. Change-over of magnification can be easily done by controlling the scanning width of the electron probe. It is possible. to continuously vary the magnification over the range from 100 times to 1.00,000 times without readjustment of focusing. Conclusion: With the development of a scanning. electron microscope, it is now possible to observe almost all-information produced through interactions between substances and electrons in the form of image. When the probe is properly focused on the specimen, changing magnification of specimen orientation does not require any change in focus. This is quite different from the conventional transmission electron microscope. It is worthwhile to note that the typical probe currents of $10^{-10}$ to $10^{-12}\;{\AA}$ are for below the $10^{-5}$ to $10^{-7}\;{\AA}$ of a conventional. transmission microscope. This reduces specimen contamination and specimen damage due to heatings. Outstanding features of the scanning electron microscope include the 'stereoscopic observation of a bulky or fiber specimen in high resolution' and 'observation of potential distribution and electromotive force in semiconductor devices'.

  • PDF

Histochemical Properties Study on the Mucosubstances of the Intestinal Mucosa in the Raja kenojei (홍어 장점막 점액의 조직화학적 성상에 관한 연구)

  • Joo, Kyeng Woong
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.36 no.2
    • /
    • pp.173-177
    • /
    • 2004
  • This study is performed in order to clarify the histochemical structure, the distribution of mucous cell and goblet cell, and the histochemical properties of the mucosubstances in the middle region of intestinal mucosa and rectum of Raja kenojei. In the H&E stain, distribution of the mucous cells and acidophilic cells were a more compacted middle portion than other regions of intestine, but the former was more than the latter in the number of mucous cells to rectum. The mucosubstances were stained with aldehyde fuchsin pH 1.7-alcian blue(pH 2.5) stain and then compared to distribution of the mucosubstances used in image and microscope technology(IMT-Size5). The middle intestine of Raja kenojei was composed of mucous cells having only large amounts of mucosubstances in the distal region was much more than that of proximal region. It was two types of mucous cells to rectum, one type was the same as proximal intestine while the other had small amounts of weakly sulfated and large amounts of carboxylated mucins.

  • PDF

Numerical Analysis for the Image Evaluation of a Thermionic SEM (열전자형 주사전자현미경 결상특성의 수치해석)

  • Jung, H.U.;Park, M.J.;Kim, D.H.;Jang, D.Y.;Park, K.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.153-158
    • /
    • 2007
  • The present study covers numerical analysis of a thermionic scanning electron microscope(SEM) column. The SEM column contains an electron optical system in which electrons are emitted and moved to form a focused beam, and this generates secondary electrons from the specimen surfaces, eventually making an image. The electron optical system mainly consists of a thermionic electron gun as the beam source, the lens system, the electron control unit, and the vacuum unit. For a systematic design of the electron optical system, the beam trajectories are investigated through numerical analyses by tracing the ray path of the electron beams, and the quality of resulting image is evaluated from the analysis results.

Measurement of Surface Crack Length Using Image Processing Technology (영상처리기법을 이용한 표면균열길이 측정)

  • Nahm, Seung-Hoon;Kim, Yong-Il;Kim, Si-Cheon;Ryu, Dae-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.96-101
    • /
    • 2001
  • The development of a new experimental method is required to easily observe the growth behavior of fatigue cracks. To satisfy the requirement, an image processing technique was introduced to fatigue testing. The length of surface fatigue crack could be successfully measured by the image processing system. At first, the image data of cracks were stored into the computer while the cyclic loading was interrupted. After testing, crack length was determined using image processing software which was developed by ourselves. Block matching method was applied to the detection of surface fatigue cracks. By comparing the data measured by image processing system with the data measured by manual measurement with a microscope, the effectiveness of the image processing system was established. If the proposed method is used to monitor and observe the crack growth behavior automatically, the time and efforts for fatigue test could be dramatically reduced.

  • PDF