• Title/Summary/Keyword: Image Standard

Search Result 2,196, Processing Time 0.03 seconds

Comparison of Noise Power Spectrum Methodologies in Measurements by Using Various Electronic Portal Imaging Devices in Radiation Therapy (방사선치료시 전자포털영상장치를 이용한 잡음전력스펙트럼 방법론 측정비교)

  • Son, Soon-Yong;Choi, Kwan-Woo;Jeong, Hoi-Woun;Kwon, Kyung-Tae;Kim, Ki-Won;Lee, Young-Ah;Son, Jin-Hyun;Min, Jung-Whan
    • Journal of radiological science and technology
    • /
    • v.39 no.1
    • /
    • pp.99-105
    • /
    • 2016
  • The noise power spectrum (NPS) is one of the most general methods for measuring the noise amplitude and the quality of an image acquired from a uniform radiation field. The purpose of this study was to compare different NPS methodologies by using megavoltage X-ray energies. The NPS evaluation methods in diagnostic radiation were applied to therapy using the International Electro-technical Commission standard (IEC 62220-1). Various radiation therapy (RT) devices such as TrueBeam$^{TM}$(Varian), BEAMVIEW$^{PLUS}$(Siemens), iViewGT(Elekta) and Clinac$^R$ iX (Varian) were used. In order to measure the region of interest (ROI) of the NPS, we used the following four factors: the overlapping impact, the non-overlapping impact, the flatness and penumbra. As for NPS results, iViewGT(Elekta) had the higher amplitude of noise, compared to BEAMVIEW$^{PLUS}$ (Siemens), TrueBeam$^{TM}$(Varian) flattening filter, Clinac$^{R}$iXaS1000(Varian) and TrueBeam$^{TM}$(Varian) flattening filter free. The present study revealed that various factors could be employed to produce megavoltage imaging (MVI) of the NPS and as a baseline standard for NPS methodologies control in MVI.

Evaluation of Image Quality According to Presence or Absence of Upper limbs in Scan Field of View During CT Examinations (Including LUNG MAN) (CT 검사 시 스캔 범위 내 상지 유무에 따른 영상의 질 평가(LUNG MAN 포함))

  • Zhang, Yuying;Zheng, Haoyang;Jung, Kang-gyo;Cho, Yu-Jin;Cho, Pyong-Kon
    • Journal of radiological science and technology
    • /
    • v.40 no.4
    • /
    • pp.567-573
    • /
    • 2017
  • The purpose of this study was to evaluate whether or not there was artifact when the upper limb could not be lifted to the top of the head during multi-detector computed tomography(MDCT) scans of the chest and abdomen. Contrast radiography of the human and chest phantom was performed with 128channal MDCT. Under the same conditions(120 kVp, 110 mAs, standard algorithm)both hands lifted up and put down each time in the human experiment. In the chest phantom experiment, the radiography was carried out when the upper limb phantom was adjusted at a certain distance(0, 3, 7 cm) from the chest phantom. Subsequently, the values of Noise, CT number, SNR, and CNR were measured in the field of concern. The noise value of fat, rib, and muscle increased when the arm was lifted in humans(0.79, 47.8, 27%). Furthermore, when the upper limb was lowered, the noise value of muscle and lung increased in the phantom(31.2, 9.4%). In addition, the noise value of the muscles and lung decreased by 5, 25.12% and 5.6, 15.35% as the upper limb moved about 0,3,7cm away from the chest. When the chest and abdominal radiography were performed, in the case of the presence of other parts outside the inspection area, the probability of artifact was minimal while the distance was more than 3cm away from the upper limb to the chest and abdomen.

Estimation of Chlorophyll Contents in Pear Tree Using Unmanned AerialVehicle-Based-Hyperspectral Imagery (무인기 기반 초분광영상을 이용한 배나무 엽록소 함량 추정)

  • Ye Seong Kang;Ki Su Park;Eun Li Kim;Jong Chan Jeong;Chan Seok Ryu;Jung Gun Cho
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.669-681
    • /
    • 2023
  • Studies have tried to apply remote sensing technology, a non-destructive survey method, instead of the existing destructive survey, which requires relatively large labor input and a long time to estimate chlorophyll content, which is an important indicator for evaluating the growth of fruit trees. This study was conducted to non-destructively evaluate the chlorophyll content of pear tree leaves using unmanned aerial vehicle-based hyperspectral imagery for two years(2021, 2022). The reflectance of the single bands of the pear tree canopy extracted through image processing was band rationed to minimize unstable radiation effects depending on time changes. The estimation (calibration and validation) models were developed using machine learning algorithms of elastic-net, k-nearest neighbors(KNN), and support vector machine with band ratios as input variables. By comparing the performance of estimation models based on full band ratios, key band ratios that are advantageous for reducing computational costs and improving reproducibility were selected. As a result, for all machine learning models, when calibration of coefficient of determination (R2)≥0.67, root mean squared error (RMSE)≤1.22 ㎍/cm2, relative error (RE)≤17.9% and validation of R2≥0.56, RMSE≤1.41 ㎍/cm2, RE≤20.7% using full band ratios were compared, four key band ratios were selected. There was relatively no significant difference in validation performance between machine learning models. Therefore, the KNN model with the highest calibration performance was used as the standard, and its key band ratios were 710/714, 718/722, 754/758, and 758/762 nm. The performance of calibration showed R2=0.80, RMSE=0.94 ㎍/cm2, RE=13.9%, and validation showed R2=0.57, RMSE=1.40 ㎍/cm2, RE=20.5%. Although the performance results based on validation were not sufficient to estimate the chlorophyll content of pear tree leaves, it is meaningful that key band ratios were selected as a standard for future research. To improve estimation performance, it is necessary to continuously secure additional datasets and improve the estimation model by reproducing it in actual orchards. In future research, it is necessary to continuously secure additional datasets to improve estimation performance, verify the reliability of the selected key band ratios, and upgrade the estimation model to be reproducible in actual orchards.

Generative Adversarial Network-Based Image Conversion Among Different Computed Tomography Protocols and Vendors: Effects on Accuracy and Variability in Quantifying Regional Disease Patterns of Interstitial Lung Disease

  • Hye Jeon Hwang;Hyunjong Kim;Joon Beom Seo;Jong Chul Ye;Gyutaek Oh;Sang Min Lee;Ryoungwoo Jang;Jihye Yun;Namkug Kim;Hee Jun Park;Ho Yun Lee;Soon Ho Yoon;Kyung Eun Shin;Jae Wook Lee;Woocheol Kwon;Joo Sung Sun;Seulgi You;Myung Hee Chung;Bo Mi Gil;Jae-Kwang Lim;Youkyung Lee;Su Jin Hong;Yo Won Choi
    • Korean Journal of Radiology
    • /
    • v.24 no.8
    • /
    • pp.807-820
    • /
    • 2023
  • Objective: To assess whether computed tomography (CT) conversion across different scan parameters and manufacturers using a routable generative adversarial network (RouteGAN) can improve the accuracy and variability in quantifying interstitial lung disease (ILD) using a deep learning-based automated software. Materials and Methods: This study included patients with ILD who underwent thin-section CT. Unmatched CT images obtained using scanners from four manufacturers (vendors A-D), standard- or low-radiation doses, and sharp or medium kernels were classified into groups 1-7 according to acquisition conditions. CT images in groups 2-7 were converted into the target CT style (Group 1: vendor A, standard dose, and sharp kernel) using a RouteGAN. ILD was quantified on original and converted CT images using a deep learning-based software (Aview, Coreline Soft). The accuracy of quantification was analyzed using the dice similarity coefficient (DSC) and pixel-wise overlap accuracy metrics against manual quantification by a radiologist. Five radiologists evaluated quantification accuracy using a 10-point visual scoring system. Results: Three hundred and fifty CT slices from 150 patients (mean age: 67.6 ± 10.7 years; 56 females) were included. The overlap accuracies for quantifying total abnormalities in groups 2-7 improved after CT conversion (original vs. converted: 0.63 vs. 0.68 for DSC, 0.66 vs. 0.70 for pixel-wise recall, and 0.68 vs. 0.73 for pixel-wise precision; P < 0.002 for all). The DSCs of fibrosis score, honeycombing, and reticulation significantly increased after CT conversion (0.32 vs. 0.64, 0.19 vs. 0.47, and 0.23 vs. 0.54, P < 0.002 for all), whereas those of ground-glass opacity, consolidation, and emphysema did not change significantly or decreased slightly. The radiologists' scores were significantly higher (P < 0.001) and less variable on converted CT. Conclusion: CT conversion using a RouteGAN can improve the accuracy and variability of CT images obtained using different scan parameters and manufacturers in deep learning-based quantification of ILD.

Clinical Practice Guideline for Endoscopic Resection of Early Gastrointestinal Cancer (조기위장관암 내시경 치료 임상진료지침)

  • Park, Chan Hyuk;Yang, Dong-Hoon;Kim, Jong Wook;Kim, Jie-Hyun;Kim, Ji Hyun;Min, Yang Won;Lee, Si Hyung;Bae, Jung Ho;Chung, Hyunsoo;Choi, Kee Don;Park, Jun Chul;Lee, Hyuk;Kwak, Min-Seob;Kim, Bun;Lee, Hyun Jung;Lee, Hye Seung;Choi, Miyoung;Park, Dong-Ah;Lee, Jong Yeul;Byeon, Jeong-Sik;Park, Chan Guk;Cho, Joo Young;Lee, Soo Teik;Chun, Hoon Jai
    • Journal of Digestive Cancer Research
    • /
    • v.8 no.1
    • /
    • pp.1-50
    • /
    • 2020
  • Although surgery was the standard treatment for early gastrointestinal cancers, endoscopic resection is now a standard treatment for early gastrointestinal cancers without regional lymph node metastasis. High-definition white light endoscopy, chromoendoscopy, and image-enhanced endoscopy such as narrow band imaging are performed to assess the edge and depth of early gastrointestinal cancers for delineation of resection boundaries and prediction of the possibility of lymph node metastasis before the decision of endoscopic resection. Endoscopic mucosal resection and/or endoscopic submucosal dissection can be performed to remove early gastrointestinal cancers completely by en bloc fashion. Histopathological evaluation should be carefully made to investigate the presence of risk factors for lymph node metastasis such as depth of cancer invasion and lymphovascular invasion. Additional treatment such as radical surgery with regional lymphadenectomy should be considered if the endoscopically resected specimen shows risk factors for lymph node metastasis. This is the first Korean clinical practice guideline for endoscopic resection of early gastrointestinal cancer. This guideline was developed by using mainly de novo methods and encompasses endoscopic management of superficial esophageal squamous cell carcinoma, early gastric cancer, and early colorectal cancer. This guideline will be revised as new data on early gastrointestinal cancer are collected.

Optimization of Tube Voltage according to Patient's Body Type during Limb examination in Digital X-ray Equipment (디지털 엑스선 장비의 사지 검사 시 환자 체형에 따른 관전압 최적화)

  • Kim, Sang-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.5
    • /
    • pp.379-385
    • /
    • 2017
  • This study identifies the optimal tube voltages depending on the changes in the patient's body type for limb tests using a digital radiography (DR) system. For the upper-limp test, the dose area product (DAP) was fixed at $5.06dGy{\ast} cm^2$, and for the lower-limb test, the DAP was fixed at $5.04dGy{\ast} cm^2$. Afterwards, the tube voltage was changed to four different stages and the images were taken three times at each stage. The thickness of the limbs was increased by 10 mm to 30 mm to change in the patient's body type. For a quantitative evaluation, Image J was used to calculate the contrast to noise ratio (CNR) and signal to noise ratio (SNR) among the four groups, according to the tube voltage. For statistical testing, the statistically significant differences were analyzed through the Kruskal-Wallis test at a 95% confidence level. For the qualitative analysis of the images, the pre-determined items were evaluated based on a 5-point Likert scale. In both upper-limb and lower-limb tests, the more the tube voltage increased, the more the CNR and SNR of the images decreased. The test on the changes depending on the patient's body shape showed that the more the thickness increased, the more the CNR and SNR decreased. In the qualitative evaluation on the upper limbs, the more the tube voltage increased, the more score increased to 4.6 at the maximum of 55kV and 3.6 at 40kV, respectively. The mean score for the lower limbs was 4.4, regardless of the tube voltage. The more either the upper or lower limbs got thicker, the more the score generally decreased. The score of the upper limps sharply dropped at 40kV, whereas that of the lower limps sharply dropped at 50kV. For patients with a standard thickness, the optimized images can be obtained when taken at 45kV for the upper limbs, and at 50kV for the lower limbs. However, when the thickness of the patient's limbs increases, it is best to set the tube voltage at 50 kV for the upper limbs and at 55 kV for the lower limbs.

The Effect of Home economic education teaching plans for students in academic and those in vocational high schools' 'Preparation for Successful aging' in the 'Family life in old age' unit -A comparative study between practical problem-teaching lesson plans and instructor-led teaching and learning plans- (인문계와 가사.실업 전문계 고등학생의 '성공적인 노후생활 준비교육'을 위한 가정과 수업의 적용과 효과 -실천적 문제 중심 수업과 강의식 수업을 중심으로-)

  • Lee, Jong-Hui;Cho, Byung-Eun
    • Journal of Korean Home Economics Education Association
    • /
    • v.23 no.4
    • /
    • pp.105-124
    • /
    • 2011
  • To achieve this objective, practical problem-teaching lesson plans and instructor-led teaching and learning plans were developed and integrated into the Technology Home Economics, and Human Development curricula at both academic and vocational high schools. The impact of these plans was examined, as were connections between the teaching methods and types of schools. As part of this study, a survey was conducted on 1,263 students in 46 classes at 6 randomly selected high schools: 4 academic and 2 vocational. A total of 9 teachers conducted classes for both experimental and comparative groups between October 2009 and November 2010. Pre- and post-tests were used to study the impact of the lessons on the experimental and comparative groups. In terms of data analysis and statistics processing, this study implemented mean and standard deviations, t-test, and analysis of covariance using the SPSS 12.0 program. The results of this study are as follows. The practical problem-teaching lessons produced more positive results in the students than the instructor-led lessons, in terms of their image of the elderly, their level of knowledge about them, their understanding of their need for welfare services, and preparation for Successful aging. When comparing the results by type of school, the experimental groups at academic high schools appeared to have a more positive image and better understanding of the elderly and their need for welfare services, and were better prepared for Successful aging than during their previous lessons. They also showed an increase in independence from their children in aging. As for the comparative groups, students at academic high schools showed an increase in preparation for Successful aging compared to the previous lessons. Finally, as for future research on preparation for aging in high schools, more schools should include this subject in their regular curriculum for Technology Home Economics, Human Development and Home Economics in order to generalize the results, and they need to evaluate the content. Additionally, this study suggests that new high school curricula should include lessons on preparation for aging so that students can deal successfully with our aging society.

  • PDF

Clinical Significance of Focal Breast Lesions Incidentally Identified by $^{18}F-FDG$ PET/CT ($^{18}F-FDG$ PET/CT에서 우연히 발견된 국소 유방 병변의 임상적 의의)

  • Cho, Young-Seok;Choi, Joon-Young;Lee, Su-Jin;Hyun, Seung-Hyup;Lee, Ji-Young;Choi, Yong;Choe, Yearn-Seong;Lee, Kyung-Han;Kim, Byung-Tae
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.6
    • /
    • pp.456-463
    • /
    • 2008
  • Purpose: We evaluated the incidence and malignant risk of focal breast lesions incidentally detected by $^{18}F-FDG$ PET/CT. Various PET/CT findings of the breast lesions were also analyzed to improve the differentiation between benign from malignant focal breast lesions. Materials & Methods: The subjects were 3,768 consecutive $^{18}F-FDG$ PET/CT exams performed in adult females without a history of breast cancer. A focal breast lesion was defined as a focal $^{18}F-FDG$ uptake or a focal nodular lesion on CT image irrespective of $^{18}F-FDG$ uptake in the breasts. The maximum SUV and CT pattern of focal breast lesions were evaluated, and were compared with final diagnosis. Results: The incidence of focal breast lesions on PET/CT in adult female subjects was 1.4% (58 lesions in 53 subjects). In finally confirmed 53 lesions of 48 subjects, 11 lesions of 8 subjects (20.8%) were proven to be malignant. When the PET/CT patterns suggesting benignancy (maximum attenuation value>75 HU or <30HU; standard deviation of mean attenuation > 20) were added as diagnostic criteria of PET/CT to differentiate benign from malignant breast lesions along with maximum SUV, the area under ROC curve of PET/CT was significantly increased compared with maximum SUV alone ($0.680{\pm}0.093$ vs. $0.786{\pm}0.076$, p<0.05). Conclusion: The malignant risk of focal breast lesions incidentally found on $^{18}F-FDG$ PET/CT is not low, deserving further diagnostic confirmation. Image interpretation considering both $^{18}F-FDG$ uptake and PET/CT pattern may be helpful to improve the differentiation from malignant and benign focal breast lesion.

Quantitative Evaluation on Optimal Scan Time of PET/CT Studies Using TOF PET (TOF 기법을 이용한 PET/CT 검사에서 적정 스캔 시간에 대한 정량적 평가)

  • Moon, Il-Sang;Lee, Hong-Jae;Kim, Jin-Eui;Kim, Hyun-Joo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.1
    • /
    • pp.34-37
    • /
    • 2012
  • Purpose: To verify the optimal scan time per bed for clinical application, we evaluated the quality of $^{18}F$-FDG images with varying scan times in a phantom and 20 patients with 38 lesions using a Philips (TOF) PET/CT scanner. Materials and Methods: The PET/CT images of a NEMA IEC body phantom and 20 patients (16 males, 4 females) were acquired for 5 different scan times of 20-100 sec per bed with intervals of 20 sec. The activity ratio of hot spheres (diameter of 17 [H1], 22 [H2] and 28 [H3] mm) to the background region in the IEC body phantom was 8-to-1. The contrast recovery coefficient (CRC) and standard uptake value (SUV) based on ROIs of hot spheres and background region were calculated. The noise in each background region was estimated as the ratio of SD of counts to the mean counts in the background region. On the patient image, the injected dose of $^{18}F$-FDG was $444{\pm}74$ MBq and the SUVs in the 38 hot lesions were measured. Results: The two scan time groups (LT-60 [<60 sec] and GT-60 [${\geq}60$ sec]) were compared. In the phantom study, the coefficient of deviations (CVs, %) of CRC and SUV in LT-60 (H1: 14.2 and 7.3, H2: 11.4 and 7.8, H3: 4.9 and 3.2) were higher than GT-60 (H1: 8.9 and 2.8, H1: 8.2 and 5.0, H3: 2.0 and 1.6). In the patient study, the mean CV of CRC and SUV in LT-60 (4.0) was higher than GT-60 (1.2). Conclusion: This study showed that noise increased as the scan time decreased. High noise for the scan time <60 sec per bed yielded high variation of SUV and CRC. Therefore, considering PET/CT image quality, the scan time per bed in the TOF PET/CT scanner should be at least ${\geq}60$ sec.

  • PDF

The Effects of Image Quality due to Scattering X-ray according to increasing Patient Thickness (피사체 두께에 따른 산란선 발생이 화질에 미치는 영향)

  • Park, Ji-Koon;Yang, Sung-Woo;Jun, Jae-Hoon;Cho, Su-Yeon;Kim, Kyo-Tae;Heo, Ye-Ji;Kang, Sang-Sik
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.7
    • /
    • pp.671-677
    • /
    • 2017
  • In this study, scattering factors affecting the quality of medical images were quantitatively analyzed and investigated. MCNPX simulation was conducted by using ANSI phantom, made of tissue equivalent materials, to calculate the scattering ratio occurred by the increase of the object thickness. Then, the result of the simulation was compared with the result of actual radiation measurement. In addition, we evaluated the image quality by the RMS evaluation, RSD and NPS analysis using X-ray images acquired with increasing object thickness. Furthermore, the scattering ratio was analyzed by increasing the thickness of acrylic phantom on chest phantom. The result showed that the scattering ratio was increased to 57.2%, 62.4%, and 66.8% from 48.9%, respectively, when the acrylic phantom thickness was increased by 1 inch from 6.1 inches. The results of MCNPX simulation and the actual measured scattering dose showed similar results. Also, as a result of RMS measurement from acquired x-ray images, the standard deviation decreased as the object thickness increased. However, in the RSD analysis considering the average incident dose, the results were increased from 0.028 to 0.039, 0.051, 0.062 as the acrylic phantom thickness was increased from 6.1 inches to 7.1 inch, 8.1 inch, and 9.1 inch, respectively. It can be seen that the increase of the scattering effect due to the increase of the object thickness reduces the SNR. Also, the NPS results obtained by measuring scattered radiation incident on the detector resulted in the increase of the noise as the object thickness increased.