• Title/Summary/Keyword: Image Signal Processor

Search Result 114, Processing Time 0.024 seconds

Low-Power Discrete-Event SoC for 3DTV Active Shutter Glasses (3DTV 엑티브 셔터 안경을 위한 저전력 이산-사건 SoC)

  • Park, Dae-Jin;Kwak, Sung-Ho;Kim, Chang-Min;Kim, Tag-Gon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.6
    • /
    • pp.18-26
    • /
    • 2011
  • Debates concerning the competitive edge of leading 3DTV technology of the shutter glasses (SG) 3D and the film-type patterned retarder (FPR) are flaring up. Although SG technology enables Full-HD 3D vision, it requires complex systems including the sync transmitter (emitter), the sync processor chip, and the LCD lens in the active shutter glasses. In addition, the transferred sync-signal is easily affected by the external noise and a 3DTV viewer may feel flicker-effect caused by cross-talk of the left and right image. The operating current of the sync processor in the 3DTV active shutter glasses is gradually increasing to compensate the sync reconstruction error. The proposed chip is a low-power hardware sync processor based discrete-event SoC(system on a chip) designed specifically for the 3DTV active shutter glasses. This processor implements the newly designed power-saving techniques targeted for low-power operation in a noisy environment between 3DTV and the active shutter glasses. This design includes a hardware pre-processor based on a universal edge tracer and provides a perfect sync reconstruction based on a floating-point timer to advance the prior commercial 3DTV shutter glasses in terms of their power consumption. These two techniques enable an accurate sync reconstruction in the slow clock frequency of the synchronization timer and reduce the power consumption to less than about a maximum of 20% compared with other major commercial processors. This article describes the system's architecture and the details of the proposed techniques, also identifying the key concepts and functions.

DSP Implementation and Open Sea Test of Underwater Image Transmission System Using QPSK Scheme (QPSK 방식을 이용한 수중영상 정보전송 시스템의 DSP구현 및 실해역 실험 연구)

  • 박종원;고학림;이덕환;최영철;김시문;김승근;임용곤
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.117-124
    • /
    • 2004
  • In this paper, we have been implemented the QPSK-based underwater transmission systems using DSP in order to transmit the underwater image data. We have adopted a BDPA (Block Data Parallel Architecture) to control multiple DSPs used in the transmitter and receiver in order to transmit the image data in real-time. We also have developed GUI software in order to drive and to debug the implemanted system in real-time. We have executed open sea tests in order to analyze the performance of the implemented system at East Sea near Kosung in Kangwon-Do. As a result of these experiments, it has been demonstrated that 10 kbps image data can be received without errors at 30m and 80m depth points, while the distance between the transmitter and the receiver is up to 20m.

Scleral Diagnostic System Implementation with Color and Blood Vessel Sign Pattern Code Generations (컬러와 혈관징후패턴 코드 생성에 의한 공막진단시스템 구현)

  • Ryu, Kwang Ryol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.12
    • /
    • pp.3029-3034
    • /
    • 2014
  • The paper describes the scleral diagnostic system implementation for human eyes by using the scleral color code and vessels sign pattern code generations. The system is based on the high performance DSP image signal processor, programmable gain control for preprocessing and RISC SD frames storage. RGB image signals are optimized by PGC, the edge image is detected form the gray image converted. The processing algorithms are executed by scleral color code generation and scleral vessels sign pattern code creation for discriminating and matching. The scleral symptomatic color code is generated by YCbCr values at memory map tolerated and the vessel sign pattern code is created by digitizing the 24 clock and 13 ring zones, overlay matching and tolerances. The experimental results for performance are that the system runs 40ms, and the color and pattern for diagnostic errors are around 20% and 24% on average. The system and technique enable a scleral diagnosis with subdividing the patterns and patient database.

A study on Simple and Complex Algorithm of Self Controlled Mobile Robot for the Obstacle Avoidance and Path Plan (자율 이동로봇의 장애물 회피 및 경로계획에 대한 간략화 알고리즘과 복합 알고리즘에 관한 연구)

  • 류한성;최중경;구본민;박무열;권정혁
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.1
    • /
    • pp.115-123
    • /
    • 2002
  • In this paper, we present two types of vision algorithm that mobile robot has CCD camera. for obstacle avoidance and path plan. One is simple algorithm that compare with grey level from input images. Also, The mobile robot depend on image processing and move command from PC host. we has been studied self controlled mobile robot system with CCD camera. This system consists of TMS320F240 digital signal processor, step motor, RF module and CCD camera. we used wireless RF module for movable command transmitting between robot and host PC. This robot go straight until 95 percent filled screen from input image. And the robot recognizes obstacle about 95 percent filled something, so it could avoid the obstacle and conclude new path plan. Another is complex algorithm that image preprocessing by edge detection, converting, thresholding and image processing by labeling, segmentation, pixel density calculation.

A Study On Radiation Detection Using CMOS Image Sensor (CMOS 이미지 센서를 사용한 방사선 측정에 관한 연구)

  • Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.19 no.2
    • /
    • pp.193-200
    • /
    • 2015
  • In this paper, we propose the radiation measuring algorithm and the device composition using CMOS image sensor. The radiation measuring algorithm using CMOS image sensor is based on the radiation particle distinguishing algorithm projected to the CMOS image sensor and accumulated and average number of pixels of the radiation particles projected to dozens of images per second with CMOS image sensor. The radiation particle distinguishing algorithm projected to the CMOS image sensor measures the radiation particle images by dividing them into R, G and B and adjusting the threshold value that distinguishes light intensity and background from the particle of each image. The radiation measuring algorithm measures radiation with accumulated and average number of radiation particles projected to dozens of images per second with CMOS image sensor according to the preset cycle. The hardware devices to verify the suggested algorithm consists of CMOS image sensor and image signal processor part, control part, power circuit part and display part. The test result of radiation measurement using the suggested CMOS image sensor is as follows. First, using the low-cost CMOS image sensor to measure radiation particles generated similar characteristics to that from measurement with expensive GM Tube. Second, using the low-cost CMOS image sensor to measure radiation presented largely similar characteristics to the linear characteristics of expensive GM Tube.

Selection of ROI for the AF using by Learning Algorithm and Stabilization Method for the Region (학습 알고리즘을 이용한 AF용 ROI 선택과 영역 안정화 방법)

  • Han, Hag-Yong;Jang, Won-Woo;Ha, Joo-Young;Hur, Kang-In;Kang, Bong-Soon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.4
    • /
    • pp.233-238
    • /
    • 2009
  • In this paper, we propose the methods to select the stable region for the detect region which is required in the system used the face to the ROI in the auto-focus digital camera. this method regards the face region as the ROI in the progressive input frame and focusing the region in the mobile camera embeded ISP module automatically. The learning algorithm to detect the face is the Adaboost algorithm. we proposed the method to detect the slanted face not participate in the train process and postprocessing method for the results of detection, and then we proposed the stabilization method to sustain the region not shake for the region. we estimated the capability for the stabilization algorithm using the RMS between the trajectory and regression curve.

  • PDF

Smart Vision Sensor for Satellite Video Surveillance Sensor Network (위성 영상감시 센서망을 위한 스마트 비젼 센서)

  • Kim, Won-Ho;Im, Jae-Yoo
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.2
    • /
    • pp.70-74
    • /
    • 2015
  • In this paper, satellite communication based video surveillance system that consisted of ultra-small aperture terminals with small-size smart vision sensor is proposed. The events such as forest fire, smoke, intruder movement are detected automatically in field and false alarms are minimized by using intelligent and high-reliable video analysis algorithms. The smart vision sensor is necessary to achieve high-confidence, high hardware endurance, seamless communication and easy maintenance requirements. To satisfy these requirements, real-time digital signal processor, camera module and satellite transceiver are integrated as a smart vision sensor-based ultra-small aperture terminal. Also, high-performance video analysis and image coding algorithms are embedded. The video analysis functions and performances were verified and confirmed practicality through computer simulation and vision sensor prototype test.

Low-Latency Median Filter Architecture for High-Speed Image Signal Processor (초고속 영상 신호 처리기를 위한 낮은 잠복지연시간을 가지는 미디언 필터 구조)

  • Park, Hyun Sang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.113-116
    • /
    • 2011
  • 고해상도 이미지 센서를 장착한 고가의 모바일 제품들이 확산되면서 중간값 필터에 기반을 둔 잡음 제거 필터의 필요성이 증가하고 있다. 이는 초박형 카메라에 내장된 이미지 센서의 물리적인 수광부 면적이 줄어듦에 따라 이미지 센서의 SNR이 떨어지기 때문이다. 게다가 영상의 해상도가 매우 높기 때문에 잡음제거 필터는 초고속으로 동작해야 한다. 따라서 잡음 제거 필터의 핵심 기능인 중간값 필터는 높은 동작주파수에서도 효과적으로 동작해야 한다. 초고속으로 동작하는 필터를 하드웨어로 구현하려면 입출력 간의 물리적 지연시간을 클럭의 주기 단위로 나누어서, 시분할하여 순차적으로 처리하는 파이프라인 구조를 가져야 한다. 파이프라인 단계는 많은 비용이 소모되는 레지스터로 구현되므로 파이프라인 단계를 줄이는 것이 바람직하다. 본 논문에서는 입력부터 출력까지의 물리적 지연시간이 데이터의 수에 비례하는 기존의 중간값 필터와 달리, 데이터 수의 로그값에 비례하는 중간값 필터의 구조를 제안한다. 제안한 중간값 필터는 서로 다른 값을 가지는 데이터 집합에서의 중간값은 자신보다 큰 원소의 수와, 작은 원소의 수가 같다는 사실을 이용하며, 버블 정렬 구조에 기반을 둔 중간값 필터에 비해서 같은 동작주파수에서의 게이트 수가 25.3% 줄어든다. 중간값 필터는 잡음제거나 위색제거 등에서도 널리 사용되고 있으므로, 제안한 구조의 중간값 필터는 초고속으로 동작하는 이미지 신호 처리기의 효과적인 구현에 적합하다.

  • PDF

DSP Embedded Early Fire Detection Method Using IR Thermal Video

  • Kim, Won-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.10
    • /
    • pp.3475-3489
    • /
    • 2014
  • Here we present a simple flame detection method for an infrared (IR) thermal camera based real-time fire surveillance digital signal processor (DSP) system. Infrared thermal cameras are especially advantageous for unattended fire surveillance. All-weather monitoring is possible, regardless of illumination and climate conditions, and the data quantity to be processed is one-third that of color videos. Conventional IR camera-based fire detection methods used mainly pixel-based temporal correlation functions. In the temporal correlation function-based methods, temporal changes in pixel intensity generated by the irregular motion and spreading of the flame pixels are measured using correlation functions. The correlation values of non-flame regions are uniform, but the flame regions have irregular temporal correlation values. To satisfy the requirement of early detection, all fire detection techniques should be practically applied within a very short period of time. The conventional pixel-based correlation function is computationally intensive. In this paper, we propose an IR camera-based simple flame detection algorithm optimized with a compact embedded DSP system to achieve early detection. To reduce the computational load, block-based calculations are used to select the candidate flame region and measure the temporal motion of flames. These functions are used together to obtain the early flame detection algorithm. The proposed simple algorithm was tested to verify the required function and performance in real-time using IR test videos and a real-time DSP system. The findings indicated that the system detected the flames within 5 to 20 seconds, and had a correct flame detection ratio of 100% with an acceptable false detection ratio in video sequence level.

Design of MRI Spectrometer Using 1 Giga-FLOPS DSP (1-GFLOPS DSP를 이용한 자기공명영상 스펙트로미터 설계)

  • 김휴정;고광혁;이상철;정민영;장경섭;이동훈;이흥규;안창범
    • Investigative Magnetic Resonance Imaging
    • /
    • v.7 no.1
    • /
    • pp.12-21
    • /
    • 2003
  • Purpose : In order to overcome limitations in the existing conventional spectrometer, a new spectrometer with advanced functionalities is designed and implemented. Materials and Methods : We designed a spectrometer using the TMS320C6701 DSP capable of 1 giga floating point operations per second (GFLOPS). The spectrometer can generate continuously varying complicate gradient waveforms by real-time calculation, and select image plane interactively. The designed spectrometer is composed of two parts: one is DSP-based digital control part, and the other is analog part generating gradient and RF waveforms, and performing demodulation of the received RF signal. Each recover board can measure 4 channel FID signals simultaneously for parallel imaging, and provides fast reconstruction using the high speed DSP. Results : The developed spectrometer was installed on a 1.5 Tesla whole body MRI system, and performance was tested by various methods. The accurate phase control required in digital modulation and demodulation was tested, and multi-channel acquisition was examined with phase-array coil imaging. Superior image quality is obtained by the developed spectrometer compared to existing commercial spectrometer especially in the fast spin echo images. Conclusion : Interactive control of the selection planes and real-time generation of gradient waveforms are important functions required for advanced imaging such as spiral scan cardiac imaging. Multi-channel acquisition is also highly demanding for parallel imaging. In this paper a spectrometer having such functionalities is designed and developed using the TMS320C6701 DSP having 1 GFLOPS computational power. Accurate phase control was achieved by the digital modulation and demodulation techniques. Superior image qualities are obtained by the developed spectrometer for various imaging techniques including FSE, GE, and angiography compared to those obtained by the existing commercial spectrometer.

  • PDF