• Title/Summary/Keyword: Image Processing Technology

Search Result 2,384, Processing Time 0.031 seconds

Identification of Multiple Cancer Cell Lines from Microscopic Images via Deep Learning (심층 학습을 통한 암세포 광학영상 식별기법)

  • Park, Jinhyung;Choe, Se-woon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.374-376
    • /
    • 2021
  • For the diagnosis of cancer-related diseases in clinical practice, pathological examination using biopsy is essential after basic diagnosis using imaging equipment. In order to proceed with such a biopsy, the assistance of an oncologist, clinical pathologist, etc. with specialized knowledge and the minimum required time are essential for confirmation. In recent years, research related to the establishment of a system capable of automatic classification of cancer cells using artificial intelligence is being actively conducted. However, previous studies show limitations in the type and accuracy of cells based on a limited algorithm. In this study, we propose a method to identify a total of 4 cancer cells through a convolutional neural network, a kind of deep learning. The optical images obtained through cell culture were learned through EfficientNet after performing pre-processing such as identification of the location of cells and image segmentation using OpenCV. The model used various hyper parameters based on EfficientNet, and trained InceptionV3 to compare and analyze the performance. As a result, cells were classified with a high accuracy of 96.8%, and this analysis method is expected to be helpful in confirming cancer.

  • PDF

A Study on Radar Video Fusion Systems for Pedestrian and Vehicle Detection (보행자 및 차량 검지를 위한 레이더 영상 융복합 시스템 연구)

  • Sung-Youn Cho;Yeo-Hwan Yoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.1
    • /
    • pp.197-205
    • /
    • 2024
  • Development of AI and big data-based algorithms to advance and optimize the recognition and detection performance of various static/dynamic vehicles in front and around the vehicle at a time when securing driving safety is the most important point in the development and commercialization of autonomous vehicles. etc. are being studied. However, there are many research cases for recognizing the same vehicle by using the unique advantages of radar and camera, but deep learning image processing technology is not used, or only a short distance is detected as the same target due to radar performance problems. Therefore, there is a need for a convergence-based vehicle recognition method that configures a dataset that can be collected from radar equipment and camera equipment, calculates the error of the dataset, and recognizes it as the same target. In this paper, we aim to develop a technology that can link location information according to the installation location because data errors occur because it is judged as the same object depending on the installation location of the radar and CCTV (video).

CComparative evaluation of the methods of producing planar image results by using Q-Metrix method of SPECT/CT in Lung Perfusion Scan (Lung Perfusion scan에서 SPECT-CT의 Q-Metrix방법과 평면영상 결과 산출방법에 대한 비교평가)

  • Ha, Tae Hwan;Lim, Jung Jin;Do, Yong Ho;Cho, Sung Wook;Noh, Gyeong Woon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.22 no.1
    • /
    • pp.90-97
    • /
    • 2018
  • Purpose The lung segment ratio which is obtained through quantitative analyses of lung perfusion scan images is calculated to evaluate the lung function pre and post surgery. In this Study, the planar image production methods by using Q-Metrix (GE Healthcare, USA) program capable of not only quantitative analysis but also computation of the segment ratio after having performed SPECT/CT are comparatively evaluated. Materials and Methods Lung perfusion scan and SPECT/CT were performed on 50 lung cancer patients prior to surgery who visited our hospital from May 1, 2015 to September 13, 2016 by using Discovery 670(GE Healthcare, USA) equipment. AP(Anterior Posterior)method that uses planar image divided the frontal and rear images into three rectangular portions by means of ROI tool while PO(Posterior Oblique)method computed the segment ratio by dividing the right lobe into three parts and the left lobe into two parts on the oblique image. Segment ratio was computed by setting the ROI and VOI in the CT image by using Q-Metrix program and statistically analysis was performed with SPSS Ver. 23. Results Regarding the correlation concordance rate of Q-Metrix and AP methods, RUL(Right upper lobe), RML(Right middle lobe) and RLL(Right lower lobe) were 0.224, 0.035 and 0.447. LUL(Left upper lobe) and LLL(Left lower lobe) were found to be 0.643 and 0.456, respectively. In the PO method, the right lobe were 0.663, 0.623 and 0.702, respectively, while the left lobe were 0.754 and 0.823. When comparison was made by using the Paired sample T-test, Right lobe were $11.6{\pm}4.5$, $26.9{\pm}6.2$ and $17.8{\pm}4.2$, respectively in the AP method. Left lobe were $28.4{\pm}4.8$ and $15.4{\pm}5.6$. The right lobe of PO had values of $17.4{\pm}5.0$, $10.5{\pm}3.6$ and $27.3{\pm}6.0$, while the left lobe had values of $21.6{\pm}4.8$ and $23.1{\pm}6.6$, thereby having statistically significant difference in comparison to the Q-Metrix method for each of the lobes (P<0.05). However, there was no statistically significant difference in Right middle lobe (P>0.05). Conclusion The AP method showed low concordance rate in correlation with the Q-Metrix method. However, PO method displayed high concordance rate overall. although AP method had significant differences in all lobes, there was no significant difference in Right middle lobe of PO method. Therefore, at the time of production of lung perfusion scan results, utilization of Q-Metrix method of SPECT/CT would be useful in computation of accurate resultant values. Moreover, it is deemed possible to expect obtain more practical sectional computation result values by using PO method at the time of planar image acquisition.

Satellite Remote Sensing for Forest Surveys and Management (산림조사(山林調査) 및 경영(經營)을 위(爲한) 위성원격탐사(衛星遠隔探査))

  • Choung, Song Hak
    • Journal of Korean Society of Forest Science
    • /
    • v.83 no.1
    • /
    • pp.75-87
    • /
    • 1994
  • The states of development of remote sensing, GIS and forest management technology are such that new directions in forest surveys and management are possible. The technologies can not be considered separately. With the increasing power and decreasing cost of computer processing and the development of inexpensive mass storage media, digital remote sensing applications are becoming more practical. Powerful microcomputer-based image analysis systems and GIS are important advancements. As well, it is only a matter of time before the integration of remote sensing image analysis systems and GIS becomes transparent to the users. Implementation of operational applications by both centralized agencies and local units is, therefore, becoming practical. This paper discussed the state of remote sensing technology and its application to forest surveys and management. The relative advantages and disadvantages of readily available remote sensing products for regional biodiversity assessment were summarized. Discussion is limited to the sources of up-to-date imagery suitable for regional land use/cover mapping, specifically : LANDSAT MSS and TM, and SPOT.

  • PDF

Implementation of AWS-based deep learning platform using streaming server and performance comparison experiment (스트리밍 서버를 이용한 AWS 기반의 딥러닝 플랫폼 구현과 성능 비교 실험)

  • Yun, Pil-Sang;Kim, Do-Yun;Jeong, Gu-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.6
    • /
    • pp.591-596
    • /
    • 2019
  • In this paper, we implemented a deep learning operation structure with less influence of local PC performance. In general, the deep learning model has a large amount of computation and is heavily influenced by the performance of the processing PC. In this paper, we implemented deep learning operation using AWS and streaming server to reduce this limitation. First, deep learning operations were performed on AWS so that deep learning operation would work even if the performance of the local PC decreased. However, with AWS, the output is less real-time relative to the input when computed. Second, we use streaming server to increase the real-time of deep learning model. If the streaming server is not used, the real-time performance is poor because the images must be processed one by one or by stacking the images. We used the YOLO v3 model as a deep learning model for performance comparison experiments, and compared the performance of local PCs with instances of AWS and GTX1080, a high-performance GPU. The simulation results show that the test time per image is 0.023444 seconds when using the p3 instance of AWS, which is similar to the test time per image of 0.027099 seconds on a local PC with the high-performance GPU GTX1080.

Deep learning based crack detection from tunnel cement concrete lining (딥러닝 기반 터널 콘크리트 라이닝 균열 탐지)

  • Bae, Soohyeon;Ham, Sangwoo;Lee, Impyeong;Lee, Gyu-Phil;Kim, Donggyou
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.583-598
    • /
    • 2022
  • As human-based tunnel inspections are affected by the subjective judgment of the inspector, making continuous history management difficult. There is a lot of deep learning-based automatic crack detection research recently. However, the large public crack datasets used in most studies differ significantly from those in tunnels. Also, additional work is required to build sophisticated crack labels in current tunnel evaluation. Therefore, we present a method to improve crack detection performance by inputting existing datasets into a deep learning model. We evaluate and compare the performance of deep learning models trained by combining existing tunnel datasets, high-quality tunnel datasets, and public crack datasets. As a result, DeepLabv3+ with Cross-Entropy loss function performed best when trained on both public datasets, patchwise classification, and oversampled tunnel datasets. In the future, we expect to contribute to establishing a plan to efficiently utilize the tunnel image acquisition system's data for deep learning model learning.

Design and implementation of an AI-based speed quiz content for social robots interacting with users (사람과 상호작용하는 소셜 로봇을 위한 인공지능 기반 스피드 퀴즈 콘텐츠의 설계와 구현)

  • Oh, Hyun-Jung;Kang, A-Reum;Kim, Do-Yun;Jeong, Gu-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.6
    • /
    • pp.611-618
    • /
    • 2020
  • In this paper, we propose a design and implementation method of speed quiz content that can be driven by a social robot capable of interacting with humans, and a method of developing an intelligent module necessary for implementation. In addition, we propose a method of implementing speed quiz content through the process of constructing a map by arranging and connecting intelligent module blocks. Recently, software education has become mandatory and interest in programming is increasing. However, programming is difficult for students without basic knowledge of programming languages to directly access, and interest in block-type programming platforms suitable for beginners is growing. The block-type programming platform used in this paper is a platform that supports immediate and intuitive programming by supporting interactions between humans and robots. In this paper, the intelligent module implemented for the speed quiz content was used by blocking it within a block-type programming platform. In order to implement the scenario of the speed quiz content proposed in this paper, we implement a total of three image-based artificial intelligence modules. In addition to the intelligent module, various functional blocks were placed to implement the speed quiz content. In this paper, we propose a method of designing a speed quiz content scenario and a method of implementing an intelligent module for speed quiz content.

Descent Dataset Generation and Landmark Extraction for Terrain Relative Navigation on Mars (화성 지형상대항법을 위한 하강 데이터셋 생성과 랜드마크 추출 방법)

  • Kim, Jae-In
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1015-1023
    • /
    • 2022
  • The Entry-Descent-Landing process of a lander involves many environmental and technical challenges. To solve these problems, recently, terrestrial relative navigation (TRN) technology has been essential for landers. TRN is a technology for estimating the position and attitude of a lander by comparing Inertial Measurement Unit (IMU) data and image data collected from a descending lander with pre-built reference data. In this paper, we present a method for generating descent dataset and extracting landmarks, which are key elements for developing TRN technologies to be used on Mars. The proposed method generates IMU data of a descending lander using a simulated Mars landing trajectory and generates descent images from high-resolution ortho-map and digital elevation map through a ray tracing technique. Landmark extraction is performed by an area-based extraction method due to the low-textured surfaces on Mars. In addition, search area reduction is carried out to improve matching accuracy and speed. The performance evaluation result for the descent dataset generation method showed that the proposed method can generate images that satisfy the imaging geometry. The performance evaluation result for the landmark extraction method showed that the proposed method ensures several meters of positioning accuracy while ensuring processing speed as fast as the feature-based methods.

A Study on the System for AI Service Production (인공지능 서비스 운영을 위한 시스템 측면에서의 연구)

  • Hong, Yong-Geun
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.10
    • /
    • pp.323-332
    • /
    • 2022
  • As various services using AI technology are being developed, much attention is being paid to AI service production. Recently, AI technology is acknowledged as one of ICT services, a lot of research is being conducted for general-purpose AI service production. In this paper, I describe the research results in terms of systems for AI service production, focusing on the distribution and production of machine learning models, which are the final steps of general machine learning development procedures. Three different Ubuntu systems were built, and experiments were conducted on the system, using data from 2017 validation COCO dataset in combination of different AI models (RFCN, SSD-Mobilenet) and different communication methods (gRPC, REST) to request and perform AI services through Tensorflow serving. Through various experiments, it was found that the type of AI model has a greater influence on AI service inference time than AI machine communication method, and in the case of object detection AI service, the number and complexity of objects in the image are more affected than the file size of the image to be detected. In addition, it was confirmed that if the AI service is performed remotely rather than locally, even if it is a machine with good performance, it takes more time to infer the AI service than if it is performed locally. Through the results of this study, it is expected that system design suitable for service goals, AI model development, and efficient AI service production will be possible.

Efficient Poisoning Attack Defense Techniques Based on Data Augmentation (데이터 증강 기반의 효율적인 포이즈닝 공격 방어 기법)

  • So-Eun Jeon;Ji-Won Ock;Min-Jeong Kim;Sa-Ra Hong;Sae-Rom Park;Il-Gu Lee
    • Convergence Security Journal
    • /
    • v.22 no.3
    • /
    • pp.25-32
    • /
    • 2022
  • Recently, the image processing industry has been activated as deep learning-based technology is introduced in the image recognition and detection field. With the development of deep learning technology, learning model vulnerabilities for adversarial attacks continue to be reported. However, studies on countermeasures against poisoning attacks that inject malicious data during learning are insufficient. The conventional countermeasure against poisoning attacks has a limitation in that it is necessary to perform a separate detection and removal operation by examining the training data each time. Therefore, in this paper, we propose a technique for reducing the attack success rate by applying modifications to the training data and inference data without a separate detection and removal process for the poison data. The One-shot kill poison attack, a clean label poison attack proposed in previous studies, was used as an attack model. The attack performance was confirmed by dividing it into a general attacker and an intelligent attacker according to the attacker's attack strategy. According to the experimental results, when the proposed defense mechanism is applied, the attack success rate can be reduced by up to 65% compared to the conventional method.