퍼지 클러스터링 기반 벡터 양자화 알고리즘은 퍼지 클러스터링 분석이 벡터 양자화 프로세스 초기단계에서 초기화에 덜 민감하게 하기 때 문에 데이터 압축 분야에서 널리 사용되어 왔다. 하지만, 퍼지 클러스터링 처리는 훈련 벡터 공간에 포함된 불확실한 양적 공식의 복잡한 프레 임워크 때문에 상당한 계산량이 요구된다. 이러한 상당한 계산량 부하를 극복하기위해 본 논문은 4,096 프로세싱 엘리먼트로 구성된 어레이 아 키텍처를 이용하여 퍼지 벡터 양자화 알고리즘의 병렬 구현을 제안한다. 제안하는 병렬 구현은 4,096 프로세싱 엘리먼트를 이용하여 클러스터 링 프로세스 동안 효과적인 벡터 할당 정책을 적용함으로써 계산적으로 효율적인 솔루션을 제공한다. 모의실험 결과, 제안한 병렬 구현은 기존 의 다른 어레이 아키텍처를 이용한 구현보다 성능 및 효율 측면에서 상당한 향상을 보였다. 또한동일한 130nm 기술에서 제안한 병렬 구현은 오늘날의 ARM이나 TI DSP 프로세서를 이용한 구현과 비교하여 약 1000배의 성능 향상 및 100배의 에너지 효율 향상을 보였다. 이 결과들은 향상된 성능 및 에너지효율에서 제안한 병렬 구현의 잠재가능성을 입증한다.
본 연구에서는 초분광영상의 국내 연안 활용 범위 확대 및 정확성 향상을 위해, 국외 연안지역에 대한 항공기 및 위성 탑재 초분광영상의 다양한 처리 기법을 소개한다. 육상과 달리, 가시광선 영역에서 미세한 반사율을 보이는 해양의 경우 보다 정밀한 대기보정이 요구된다. 이와 함께, 태양-해수면-센서의 기하학적 특징으로 나타나는 태양광 정반사(sun-glint)와 같은 이상 현상을 제거하기 위한 다양한 기법도 개발되어 왔다. 대기 및 정반사 보정된 초분광영상은 연안지역의 수심추정과 산호와 같은 저서 생물 및 해저면 종류 분류, 저서 생물 상태 모니터링에 활용되는데, 주로 복사전달모델과 분광라이브러리에 기반을 둔 반분석적 기법을 사용한다. 이는 초분광영상의 많은 분광 정보를 활용하는 방법으로, 실험적 모델을 적용하는 다중분광자료에 비해 상대적으로 정확도가 높다. 광학영상의 해양활용에서 있어 수심 및 수질은 매우 중요한 제약점으로, 특히 복사전달모델에 기반을 둔 분석에 따르면 초분광영상은 최대 25m까지 수심측정이나 해저면 분류가 가능하다고 하나, 실제 많은 연구에서 항공기 및 위성 탑재 초분광영상은 수심 10m 이내의 연안지역에서 활용되고 있다. 이와 같은 연구결과를 바탕으로 국내 연안지역의 초분광영상자료의 정확하고 정량적인 연안 활용을 위해서는 최대 탐지 가능한 수심 및 수질조건 등에 대한 분석이 필요하다는 것을 확인하였다. 또한 국내 연안지역에 대해 분류 가능한 저서 생물과 해저면의 분류 및 분광라이브러리 구축의 필요성을 제시하였다.
상·하수도 시스템은 사람들에게 안전하고 깨끗한 물을 공급해주는 사회기반시설이며, 특히 상·하수도 관로는 지중에 매설되어 있기 때문에 시스템의 결함검출이 매우 어렵다. 이러한 이유로 상·하수도 관로의 진단은 관로 내부에 카메라 및 드론을 통한 촬영을 하여 사후에 촬영된 영상을 바탕으로 시스템 진단하는 등의 사후 결함검출로 제한되기 때문에, 작업자의 업무 효율 증대와 진단의 신속성을 위해서는 관로의 실시간 탐지기술이 필요하다. 최근 첨단장비 및 인공지능 기법을 활용한 시설물 진단 기술이 개발되고 있지만, 인공지능기반 결함검출 기술은 결함 데이터의 종류 및 형태, 수가 검출 성능에 영향을 주기 때문에 다양한 학습데이터가 필요하다. 따라서, 본 연구에서는 상·하수도 관로의 결함검출 시 탐지 성능 향상을 위해 다양한 결함 시나리오를 3D 프린트를 이용하여 구현하고 이를 수집된 결함 데이터와 함께 학습데이터로 사용한다. 이후 수집된 이미지는 위험도에 따른 분류 및 객체의 라벨링 등의 전처리 작업이 수행되고 실시간 결함탐지를 수행한다. 제안된 기법은 상·하수도시스템 결함검출 시 실시간 피드백을 제공함으로써, 작업자의 진단 누락 가능성을 최소화하며 기존의 상·하수도관 진단업무 처리능력을 향상할 수 있다.
A deep learning based real-time painting surface inspection algorithm is proposed herein, designed for developing an autonomous inspection drone. The painting surface inspection is usually conducted manually. However, the manual inspection has a limitation in obtaining accurate data for correct judgement on the surface because of human error and deviation of individual inspection experiences. The best method to replace manual surface inspection is the vision-based inspection method with a camera, using various image processing algorithms. Nevertheless, the visual inspection is difficult to apply to surface inspection due to diverse appearances of material, hue, and lightning effects. To overcome technical limitations, a deep learning-based pattern recognition algorithm is proposed, which is specialized for painting surface inspections. The proposed algorithm functions in real time on the embedded board mounted on an autonomous inspection drone. The inspection results data are stored in the database and used for training the deep learning algorithm to improve performance. The various experiments for pre-inspection of painting processes are performed to verify real-time performance of the proposed deep learning algorithm.
Kim, Mugeon;Lim, Sungjin;Choi, Geunseop;Kim, Youngmin;Kim, Hwi;Hahn, Joonku
ETRI Journal
/
제40권3호
/
pp.366-375
/
2018
Recently, techniques involving head-mounted displays (HMDs) have attracted much attention from academia and industry owing to the increased demand for virtual reality and augmented reality applications. Because HMDs are positioned near to users' eyes, it is important to solve the accommodation-vergence conflict problem to prevent dizziness. Therefore, holography is considered ideal for implementing HMDs. However, within the Nyquist region, the accommodation effect is limited by the space-bandwidth-product of the signal, which is determined by the sampling number of spatial light modulators. In addition, information about the angular spectrum is duplicated over the Fourier domain, and it is necessary to filter out the redundancy. The size of the exit-pupil of the HMD is limited by the Nyquist sampling theory. We newly propose a holographic HMD with an expanded exit-pupil over the Nyquist region by using the time-multiplexing method, and the accommodation effect is enhanced. We realize time-multiplexing by synchronizing a high-speed digital micromirror device and a liquid-crystal shutter array. We also demonstrate the accommodation effect experimentally.
영상 처리 기술에 기반한 경비 및 보안 감시 시스템이 보급되면서, 영상으로부터 정확하게 대상 물체를 추출하는 기술의 필요성이 증대되었다. 조명이 시시각각 변하는 경우 물체를 정확하게 추출하느냐는 더욱 어려운 문제가 된다. 영상으로부터 그림자를 제거한 물체를 추출해내기 위해서 많은 노력이 있었다. 여러 그림자 제거 방법들이 공통적으로 가지는 문제점이 있는데, 그림자 제거 시 물체의 일부도 손상시킨다는 점이다. 본 논문에서는 이런 문제점을 보완하기 위해서 그림자 제거 후 컬러 정보를 이용하여 물체의 손상된 영역을 복원하는 방법을 제안한다. 다양한 환경으로부터 획득한 영상에 제안한 방법을 적용하여 그 타당성을 검증하였다.
Kim, Sung Hee;Pae, Dong Sung;Kang, Tae-Koo;Kim, Dong W.;Lim, Myo Taeg
Journal of Electrical Engineering and Technology
/
제13권6호
/
pp.2468-2478
/
2018
We propose the Sparse Feature Convolutional Neural Network (SFCNN) to reduce the volume of convolutional neural networks (CNNs). Despite the superior classification performance of CNNs, their enormous network volume requires high computational cost and long processing time, making real-time applications such as online-training difficult. We propose an advanced network that reduces the volume of conventional CNNs by producing a region-based sparse feature map. To produce the sparse feature map, two complementary region-based value extraction methods, cluster max extraction and local value extraction, are proposed. Cluster max is selected as the main function based on experimental results. To evaluate SFCNN, we conduct an experiment with two conventional CNNs. The network trains 59 times faster and tests 81 times faster than the VGG network, with a 1.2% loss of accuracy in multi-class classification using the Caltech101 dataset. In vehicle classification using the GTI Vehicle Image Database, the network trains 88 times faster and tests 94 times faster than the conventional CNNs, with a 0.1% loss of accuracy.
본 논문에서는 사회문제 중 하나인 계속적으로 증가하는 미아발생부분에서 미아발생시 보호자를 손쉽게 찾기 위한 해결방안으로 WWW를 기반으로 어느곳에서나 이용할 수 있는 편리하고 안전한 시스템을 개발하고자 한다. 지문인식을 비롯한 생체인식기술은 이미 오랜 시간동안 연구가 계속되고 있고 많은 분야에서 생체 인식을 이용한 개인 인증이 실시되고 있다. 본 논문에서는 생체 인식 중 가장 일반화되고 있고 사람마다 고유의 특성차이를 나타내는 지문을 영상 처리 방법으로 인식하여 본인 여부를 판단하는 지문인식 방법을 이용하여 미아나 장애인 보호를 위한 WWW 기반 미아방지시스템(NomiaSys)을 설계하고 구현하였다. 또한 본 시스템의 활성화 방안을 제시하고자 한다.
비구면렌즈는 구면렌즈계의 단점을 보완하여 결상 성능을 향상시키며, 렌즈의 사용매수를 경감시키고 이로 인하여 광학계의 무게와 부피를 줄이는 소형경량화를 목적으로 하여 사용되고 있다. 비구면 광학소자의 생산기술과 측정기술은 현대의 첨단기술로 부각되고 있다. 비구면으로 구성된 원광학계는 넓은 시야와 고성능, 양질의 상을 얻을 수 있고, 또한 소형, 경량화 시킬 수 있는 등 많은 장점을 가지고 있다. 이러한 비구면 소자의 급증하는 필요성에 부응하여 비구면 가공 기술과 측정 기술에 대하여 연구하고자 한다. 비구면 생산 기술과 측정 및 평가 기술은 끊임없이 발전하고 있음을 밝혀둔다.
컴퓨터 게임에서 사용하는 복잡한 3차원 캐릭터 모델을 단순한 모델로 만드는 것은 매우 중요하다. 제안 방법은 3차원 게임 캐릭터에서 특징선을 추출하여 모델을 단순화 시키는 새로운 방법에 대해 제안한다. 주어진 3차원 캐릭터 모델은 텍스처 정보를 포함하고 있다. 3차원 캐릭터 모델에서의 텍스처 및 곡률의 변동을 이용해서 2차원 맵인 모델특징맵(Model Feature Map)을 생성한다. 모델특징맵은 곡률 맵(curvature map)과 텍스처 맵(texture map)으로부터 생성되며, 본 맵을 통해 에지 추출 기법을 이용하여 특징선을 추출한다. 모델특징맵은 표준 영상처리툴을 이용해 쉽게 편집할 수 있다. 실험을 통하여 본 알고리즘의 효율성을 보여주며, 실험은 얼굴 캐릭터에 한정하지 않는다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.