• Title/Summary/Keyword: Image Processing Method

Search Result 4,586, Processing Time 0.03 seconds

저가의 머신 비전 카메라를 이용한 2차원 진동의 측정 및 교정 (Measurement of two-dimensional vibration and calibration using the low-cost machine vision camera)

  • 김서우;이정권
    • 한국음향학회지
    • /
    • 제37권2호
    • /
    • pp.99-109
    • /
    • 2018
  • 현존하는 진동 측정 센서는 정밀도 면에서는 대부분의 진동을 측정하기에 충분하나, 센서 한 개로 하나의 지점이나 방향에 한정하여 측정할 수밖에 없다는 단점을 갖고 있다. 반면 카메라의 경우, 정밀도나 측정 가능한 주파수 영역의 면에서는 다소 불리하지만, 한 번에 광범위한 영역의 진동을 측정할 수 있고 가격 면에서 유리하며 다자유도의 진동을 동시에 측정할 수 있다는 큰 장점을 갖고 있다. 본 연구에서는 저가의 머신 비전 카메라가 진동 측정 센서로서 어느 정도의 오차 범위 내에서 진동을 측정할 수 있는지 알아본 후, 실제 외팔보의 진동을 측정하였다. 카메라의 2차원 평면 이미지는 두 방향의 직선 운동과 한 방향의 회전 운동을 나타낼 수 있다. 먼저 단일 점의 진동을 카메라로 측정하고, LDV(Laser Doppler Vibrometer) 측정을 기준으로 한 카메라 측정의 오차를 실험적으로 교정하였다. 다음으로 다중점의 진동을 한 번에 측정하여 회전 진동과 외팔보 전체 형상의 진동을 측정하였다. 외팔보 전체 형상 진동은 주파수와 시간 영역 모두에 대하여 분석하였다.

치과 분야 연구에서 미세전산화 단층촬영술의 이론: 치아우식증에 대한 적용 (Theory of X-ray microcomputed tomography in dental research: application for the caries research)

  • 박영석;배광학;장주혜;손원준
    • Restorative Dentistry and Endodontics
    • /
    • 제36권2호
    • /
    • pp.98-107
    • /
    • 2011
  • 치아우식증은 현대 사회에서 여전히 유병률이 높으며, 치과 분야의 주요 상병으로 자리잡고 있다. 치아우식증에 대한 연구에 매우 다양한 방법들이 동원되고 있으나, 최근 미세전산화 단층촬영은 비파괴적인 3차원 분석 기술로서 인기를 얻어 왔으며, 기존의 방법들에 비해 다양한 장점들을 가지고 있다. 미세전산화 단층촬영술은 X선원의 종류에 따라, 모노크로매틱 혹은 폴리크로매틱으로 나뉘어지고, 전자의 경우 몇몇 장점에도 불구하고, 고가의 장비를 요구하므로 후자가 훨씬 널리 사용된다. 투과방사선량의 감소에 따라 결정되는 미네랄 밀도의 차이가 기본 원리이며, 보다 좋은 이미지와 재현 가능한 측정을 위해서는 장비의 교정과 이미지 보정 작업등이 요구된다. 또한, 미세전산화 단층촬영술을 이용하면, 치아우식 병소의 3차원적인 재건이 가능하며, 병소의 내부 구조를 가시화할 수 있다. 최근 컴퓨터 기술의 발전과 더불어 다양한 응용이 시도되고 있는데, 자동화된 충치의 정량적 분석 알고리즘 등이 그 예에 해당된다.

라이다 칩을 이용한 고해상도 위성영상의 자동좌표등록 (LiDAR Chip for Automated Geo-referencing of High-Resolution Satellite Imagery)

  • 이창노;오재홍
    • 한국측량학회지
    • /
    • 제32권4_1호
    • /
    • pp.319-326
    • /
    • 2014
  • 고해상도 위성영상을 성공적으로 활용하기 위해서는 지상기준점 등을 활용한 좌표등록 및 보정 과정이 필수적이다. 작업자의 수작업을 통한 기준점 획득의 경우 작업 시간이 오래 걸리므로, 자동화된 좌표 등록 방법에 대한 요구가 증대하고 있다. 보정하고자 하는 위성 영상을 정확한 좌표를 가진 참조 데이터에 영상 매칭을 수행하는 기법이 많이 소개 되었는데, 참조 데이터 중 라이다 데이터의 경우 공간 해상도 및 정확도가 높고 무엇보다 3차원 데이터이기 때문에 기복 변위 등을 내포하고 있지 않는 등의 장점을 보인다. 최근 라이다 데이터와 고해상도 위성영상간의 매칭을 위한 기법이 연구, 발표되었으나, 라이다 데이터의 특성상 대용량이기 때문에 처리에 많은 시간이 소요되는 등의 단점이 있었다. 따라서 본 논문에서는 일부의 공간만을 라이다 칩으로 추출 및 저장하여 위성영상의 좌표 등록에 활용하는 연구를 수행하였다. 이를 위해, 전체 라이다 포인트 데이터를 반사강도 정사영상 및 수치표고모델의 두 가지 형태로 변환하고 에지 추출을 통해 의미 있는 양의 에지 정보만을 포함하는 지역을 영상형태의 라이다 칩으로 추출, 저장하였으며, 용량이 현저히 줄어든 것을 확인할 수 있었다. 마지막으로 라이다 칩을 아리랑2호 및 아리랑3호 영상의 자동 좌표등록에 활용 해본 결과 평균 한 픽셀가량의 정확도 또한 확보할 수 있었다.

모바일 환경을 위해 에지맵 보간과 개선된 고속 Back Projection 기법을 이용한 Super Resolution 알고리즘 (Super Resolution Algorithm Based on Edge Map Interpolation and Improved Fast Back Projection Method in Mobile Devices)

  • 이두희;박대현;김윤
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제1권2호
    • /
    • pp.103-108
    • /
    • 2012
  • 최근 고성능 모바일기기의 보급과 멀티미디어 콘텐츠의 활용이 커짐에 따라 저해상도 영상을 고해상도로 재구성하는 초해상도(super resolution) 기법이 중요하게 대두되고 있다. 모바일기기에서는 초해상도를 사용하기 위해서는 연산량과 메모리 등의 제한적인 자원의 사용을 고려한 초해상도 알고리즘이 요구된다. 본 논문에서는 모바일기기에 적용하기 위해 단일영상을 통한 빠른 초해상도 기법을 제안한다. 제안한 알고리즘은 색채 왜곡을 방지하기 위해 RGB 컬러 도메인에서 HSV 컬러 도메인으로 변경하여 인간의 시각인지 특성이 가장 뚜렷한 밝기정보인 V만 처리한다. 먼저 잡음제거 및 속도향상을 고려하여 개선된 고속 back projection에 의해 영상을 확대 재구성한다. 이와 함께 2차 미분을 사용하는 LoG (laplacian of gaussian) 필터링을 이용하여 신뢰할 수 있는 에지 맵을 추출한다. 최종적으로 에지 정보와 개선된 back projection 결과를 이용하여 고해상도 영상을 재구성한다. 제안한 알고리즘을 사용하여 복원한 영상은 부자연스러운 인공물을 효과적으로 제거하고, blur현상을 최소화하여 에지 정보를 보정하고 강조해준다. 실험결과를 통해 제안하는 알고리즘이 기존의 보간법이나 전통적인 back projection 결과보다 주관적인 화질이 우수하고, 객관적으로 우수한 성능을 나타냄을 입증한다.

피라미드 구조와 베이지안 접근법을 이용한 Markove Random Field의 효율적 모델링 (Efficient Methodology in Markov Random Field Modeling : Multiresolution Structure and Bayesian Approach in Parameter Estimation)

  • 정명희;홍의석
    • 대한원격탐사학회지
    • /
    • 제15권2호
    • /
    • pp.147-158
    • /
    • 1999
  • 지표면에 대한 다양한 정보를 제공해 주는 원격탐사기법은 수 십년 동안 우리의 환경을 관찰하고 이해하는데 중요한 역할을 해왔다. 이러한 원격탐사 자료를 이용하는데 다양한 디지털 영상처리기법이 도입되어 자료에서 관찰되는 여러 가지 특성을 모형화하고 처리하는데 매우 유용하게 활용되어져 왔다. 화소들 간의 공간적 관계를 고려하는 Markov Random Field (MRF) 모형은 텍스처 모델링이나 영상분할 및 분류와 같은 여러 분야에서 많이 이용되는 모형으로 이것에 기초한 다양한 알고리즘이 발표되었다. 보통 원격탐사 자료는 그 크기가 매우 크고 시간적 간격을 두고 변화를 관측해 가는 경우에는 분석해야할 자료의 양이 매우 방대하다. 이러한 자료를 처리하는데 걸리는 시간은 처리해야할 자료의 양과는 비선형적 관계에 있다. 본 논문에서는 MRF를 이용하여 원격탐사 자료를 처리할 때 걸리는 시간을 단축하기 위한 방법론이 연구되었다. 이를 위해 논리적 구조로 영상을 피라미드형태로 감소하는 크기로 분석하는 multiresolution 구조가 고려되었는데 이는 연상의 거시적 특징과 미세한 특징을 효율적으로 분석할 수 있는 방법을 제공해 준다. 영상의 크기가 커질수록 파라미터 추정 또한 복잡하고 많은 시간을 요하게 된다. 본 논문에서는 이를 위해 Bayesian 방법을 이용하여 원격탐사 영상과 같은 크기가 큰 영상의 MRF 모형의 파라미터를 효율적으로 추정할 수 있는 방법에 제안되어 있다.

딥러닝 기반 터널 콘크리트 라이닝 균열 탐지 (Deep learning based crack detection from tunnel cement concrete lining)

  • 배수현;함상우;이임평;이규필;김동규
    • 한국터널지하공간학회 논문집
    • /
    • 제24권6호
    • /
    • pp.583-598
    • /
    • 2022
  • 인력기반 터널 점검은 점검자의 주관적인 판단에 영향을 받으며 지속적인 이력관리가 어렵다. 따라서 최근에는 딥러닝 기반 자동 균열 탐지 연구가 활발히 진행되고 있다. 하지만 대부분의 연구에서는 사용하는 대규모 공개 균열 데이터셋은 터널 내부에서 발생하는 균열과 매우 상이하다. 또한 현행 터널 상태평가에서 정교한 균열 레이블을 구축하기 위해서는 추가적인 작업이 요구된다. 이에 본 연구는 균열 형상이 다소 단순하게 표현된 기존 데이터셋을 딥러닝 모델에 입력하여 균열 탐지 성능을 개선하는 방안을 제시한다. 기존 터널 데이터셋, 고품질 터널 데이터셋과 공개 균열 데이터셋을 조합하여 학습한 딥러닝 모델의 성능 평가와 비교를 수행한다. 그 결과 Cross Entropy 손실함수를 사용한 DeepLabv3+에 공개 데이터셋, 패치 단위 분류와 오버샘플링을 수행한 터널 데이터셋을 모두 학습한 경우 성능이 가장 좋았다. 향후 기 구축된 터널 영상 취득 시스템 데이터를 딥러닝 모델 학습에 효율적으로 활용하기 위한 방안을 수립하는 데 기여할 것으로 기대한다.

필기체 숫자 데이터 차원 감소를 위한 선분 특징 분석 알고리즘 (Line-Segment Feature Analysis Algorithm for Handwritten-Digits Data Reduction)

  • 김창민;이우범
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권4호
    • /
    • pp.125-132
    • /
    • 2021
  • 인공신경망의 계층의 깊이가 깊어지고 입력으로 사용되는 데이터 차원이 증가됨에 신경망의 학습 및 인식에 있어서 많은 연산을 고속으로 요구하는 고연산의 문제가 발생한다. 따라서 본 논문에서는 신경망 입력 데이터의 차원을 감소시키기 위한 데이터 차원 감소 방법을 제안한다. 제안하는 선분 특징 분석(Line-segment Feature Analysis; LFA) 알고리즘은 한 영상 내에 존재하는 객체의 선분(Line-segment) 특징을 분석하기 위하여 메디안 필터(median filter)를 사용한 기울기 기반의 윤곽선 검출 알고리즘을 적용한다. 추출된 윤곽 영상은 [0, 1, 2, 4, 8, 16, 32, 64, 128]의 계수 값으로 구성된 3×3 또는 5×5 크기의 검출 필터를 이용하여 8가지 선분의 종류에 상응하는 고유값을 계산한다. 각각의 검출필터로 계산된 고유값으로부터 동일한 반응값을 누적하여 두 개의 1차원의 256 크기의 데이터를 생성하고 두 가지 데이터 요소를 합산하여 LFA256 데이터를, 두 데이터를 합병하여 512 크기의 LAF512 데이터를 생성한다. 제안한 LFA 알고리즘의 성능평가는 필기체 숫자 인식을 위한 데이터 차원 감소를 목적으로 PCA 기법과 AlexNet 모델을 이용하여 비교 실험한 결과 LFA256과 LFA512가 각각 98.7%와 99%의 인식 성능을 보였다.

인공지능 서비스 운영을 위한 시스템 측면에서의 연구 (A Study on the System for AI Service Production)

  • 홍용근
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제11권10호
    • /
    • pp.323-332
    • /
    • 2022
  • AI 기술을 활용한 다양한 서비스가 개발되면서, AI 서비스 운영에 많은 관심이 집중되고 있다. 최근에는 AI 기술도 하나의 ICT 서비스를 보고, 범용적인 AI 서비스 운영을 위한 연구가 많이 진행되고 있다. 본 논문에서는 일반적인 기계학습 개발 절차의 마지막 단계인 기계학습 모델 배포 및 운영에 초점을 두고 AI 서비스 운영을 위한 시스템 측면에서의 연구 결과를 기술하였다. 3대의 서로 다른 Ubuntu 시스템을 구축하고, 이 시스템상에서 서로 다른 AI 모델(RFCN, SSD-Mobilenet)과 서로 다른 통신 방식(gRPC, REST)의 조합으로 2017 validation COCO dataset의 데이터를 이용하여 객체 검출 서비스를 Tensorflow serving을 통하여 AI 서비스를 요청하는 부분과 AI 서비스를 수행하는 부분으로 나누어 실험하였다. 다양한 실험을 통하여 AI 모델의 종류가 AI 머신의 통신 방식보다 AI 서비스 추론 시간에 더 큰 영향을 미치고, 객체 검출 AI 서비스의 경우 검출하려는 이미지의 파일 크기보다는 이미지 내의 객체 개수와 복잡도에 따라 AI 서비스 추론 시간이 더 큰 영향을 받는다는 것을 알 수 있었다. 그리고, AI 서비스를 로컬이 아닌 원격에서 수행하면 성능이 좋은 머신이라고 하더라도 로컬에서 수행하는 경우보다 AI 서비스 추론 시간이 더 걸린다는 것을 확인할 수 있었다. 본 연구 결과를 통하여 서비스 목표에 적합한 시스템 설계와 AI 모델 개발 및 효율적인 AI 서비스 운영이 가능해질 것으로 본다.

데이터 증강 기반의 효율적인 포이즈닝 공격 방어 기법 (Efficient Poisoning Attack Defense Techniques Based on Data Augmentation)

  • 전소은;옥지원;김민정;홍사라;박새롬;이일구
    • 융합보안논문지
    • /
    • 제22권3호
    • /
    • pp.25-32
    • /
    • 2022
  • 최근 이미지 인식 및 탐지 분야에 딥러닝 기반의 기술이 도입되면서 영상 처리 산업이 활성화되고 있다. 딥러닝 기술의 발전과 함께 적대적 공격에 대한 학습 모델 취약점이 계속해서 보고되고 있지만, 학습 시점에 악의적인 데이터를 주입하는 포이즈닝 공격의 대응 방안에 대한 연구가 미흡한 실정이다. 종래 포이즈닝 공격의 대응 방안은 매번 학습 데이터를 검사하여 별도의 탐지 및 제거 작업을 수행해야 한다는 한계가 있었다. 따라서, 본 논문에서는 포이즌 데이터에 대해 별도의 탐지 및 제거과정 없이 학습 데이터와 추론 데이터에 약간의 변형을 가함으로써 공격 성공률을 저하시키는 기법을 제안한다. 선행연구에서 제안된 클린 라벨 포이즌 공격인 원샷킬 포이즌 공격을 공격 모델로 활용하였고, 공격자의 공격 전략에 따라 일반 공격자와 지능형 공격자로 나누어 공격 성능을 확인하였다. 실험 결과에 따르면 제안하는 방어 메커니즘을 적용하면 종래 방법 대비 최대 65%의 공격 성공률을 저하시킬 수 있었다.

아쿠아포닉스 환경에서의 작물 면적 데이터 AI 분석 연구 (A Study on the AI Analysis of Crop Area Data in Aquaponics)

  • 최은영;이현섭;차주형;이임건
    • 문화기술의 융합
    • /
    • 제9권3호
    • /
    • pp.861-866
    • /
    • 2023
  • 화학비료와 넓은 공간이 있어야 하는 기존의 스마트팜과 달리, 수생생물과 작물간의 공생 관계를 활용하여 환경오염 및 기후 변화 등의 비정상적인 환경에서도 작물 재배가 가능한 아쿠아포닉스 농법이 활발하게 연구되고 있다. 해당 농법은 작물마다 생장에 필요한 환경과 영양분이 다르므로, 생장에 최적화된 수생생물 비율을 구성이 필요하다. 본 연구는 아쿠아포닉스 환경에 영상처리 기법을 활용하여 면적과 부피를 기준으로 생육 정도를 측정하는 방법을 제안한다. 배설물을 통해 유기물 생성하는 여러 종류의 민물고기와 상추 작물을 아쿠아포닉스 환경에 생육을 통해 검증하였다. 상추의 2D와 3D 영상 분석과 실시간 데이터 분석을 통해 상추의 면적 및 부피 정보를 활용하여 생장 정도를 평가하였다. 실험 결과, 상추의 면적과 부피 정보를 활용하여 재배관리가 가능하다는 것을 입증하였다. 수생생물과 생육 정보를 활용하여 농업인에게 생산 예측 서비스 제공과,변화하는 농업 환경에서의 문제점을 해결하는 시작점이 되어줄 것으로 보인다.