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Abstract : Remote sensing technique has offered better understanding of our environment for the
decades by providing useful level of information on the landcover. In many applications using the
remotely sensed data, digital image processing methodology has been usefully employed to characterize
the features in the data and develop the models. Random field models, especialy Markov Random Field
(MRF) models exploiting spatial relationships, are successfully utilized in many problems such as texture
modeling, region labeling and so on.

Usually, remotely sensed imagery are very large in nature and the data increase greatly in the problem
requiring temporal data over time period. The time required to process increasing larger images is not
linear. In this study, the methodology to reduce the computational cost is investigated in the utilization of
the Markov Random Feld. For this, multiresolution framework is explored which provides convenient
and efficient structures for the transition between the local and global features. The computational
requiremnents for parameter estimation of the MRF model also become excessive as image size increases.
A Bayesian approach is investigated as an alternative estimation method to reduce the computational
burden in estimation of the parameters of large images.

Key Words : Markov Random Field, Multiresolution framework, Bayesian, Multivariate Normal
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1. Introduction

Remote sensing has become an important tool
for monitoring a wide variety of targets on the
earth’s surface, such as vigor, type, and quantity
of vegetation, growth of urban areas, and ocean
circulation and so on , providing an attractive
alternative to ground surveys because remotely
sensed imagery provides measurements of the
characteristics of a large area and contains various
levels of information on landcover. The relatively
low cost of satellite images makes large scale
environmental monitoring over long time periods
possible and our environment has been better
understood from these data for decades.

In many problems using the remotely sensed
data, digital image processing methodology has
been usefully employed to extract information in
the observed data characterizing features in the
data. Many effective data analysis techniques
have been developed using theoretically well-
defined approaches in processing and modeling
the remotely sensed data. Among these
approaches, the use of stochastic models has
increased recently, resulting in development of

many practical algorithms in the field of image
classification, feature extraction, image restoration,
and so on. Statistical approaches often apply the
Markov random field (MRF) to problems in
texture modeling and classification (Cross and
Jain, 1983; Dubes and Jain, 1989; Solberg, 1999)
and to researches in segmentation and restoration
(Dubes and Jain, 1989),

introduction of spatial context. MRF extends

permitting the

Markovian dependence from 1-D to 2-D or 3-D
general setting exploiting spatial adjacency
relationships.

Remotely sensed data are very large in nature,
especially in the problem requiring temporal data
over time period. The time required for process of
increasing larger images is not linear. For
example, processing of a 1024 x 1024 image using
conventional relaxation-type algorithms is greater
than 4 times the time for a 512 X 512 image, because
it requires more iterations for convergence.

One way to reduce the computational burden is
to reduce the volume of input data. This idea is
naturally related to the concept of multiresolution.
Representation of an image at multiple resolutions

provides convenient and efficient structures for
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the transition between the local and global
features. Furthermore, it often produces better
results such as in the early work on edge detection
(Jolin and Rosenfeld, 1994). The basic concept is
that if the objects or regions of interest are
relatively large compared to the pixel size, then
the probability of the groups of contiguous pixels
being in the same class is much greater than the
probability of being in different classes. Many
works integrated with multiresolution structure
have been explored extensively in a variety of
applications and turned out to be useful
{Lakshmanan and Derin, 1980; Burt et al., 1981;
Rosenfeld, 1984).

In this study, the methodology to reduce the
computational cost is explored in the utilization of
the Markov Random Field. According to the
Markovian property, global features in the image
are explained only through the local interactions
between the neighboring pixels, which results in the
slow computational algorithms. A multiresolution
MRF framework would provide an efficient
approach that images are processed at a coarse
resolution and then progressively refined to the
finer resolutions instead of analysis of all the
pixels at the full resolution. This would allow
global features to propagate relatively quickly.
However, there is a fundamental difficulty with
the consistent model description at multiple levels
since the local dependency assumed in the MRF
model is modeled in only one level. Reduced
resolution version of images obtained by general
sampling or block-to-point type resolution
transformation turns out to lose Markovian
property except a very few sampling schemes
(Jeng, 1989). Therefore, non-Markov fields are to
be approximated by MRFs to model the images as
MRFs at multi levels. In this study, adapting the

approach of normalized group study, a

markovain approximation is obtained by bond-
moving approximation between the distant pixels.

Parameter estimation is also one inherent
difficulty of using MRF models because of the
normalizing function in a Gibbs distribution.
Instead of computationally complicated classical
maximum likelihood estimation method, some
alternative techniques such as coding method
(Cross and Jain, 1983) or Least Square Error
Method (Derin and Elliot, 1987) are suggested. As
image size increases, the computational
requirements for the parameter estimation of MRF
models also become excessive. In this research, to
reduce the computational complexity in
estimation of the parameters of large images, a
Bayesian approach is explored as an alternative
estimation method based on the MRF assumption
that a global feature is defined through local
characteristics.

The paper is organized as follows: processing
and modeling images at the multiresolution
framework to reduce the computational burden is
investigated in Section II. Section It describes the
alternative Bayesian approach for the parameter
estimation. Section IV includes the evaluation of
the proposed algorithms and some results.

Finally, Section V has some conclusions.

2. Utilization of Multiresolution MRF
framework

It is noted that a unique Gibbs Random Field
exists for every MRF and vice versa, as long as the
GRF is defined in terms of cliques on a
neighborhood system, which is known as the
Hammersley-Clifford theorem (Cressie, 1993).
This equivalence provides a simple, practical way

of specifying MRFs by specifying potentials
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instead of local characteristics which is one of the
difficulties with MRF. It makes the Gibbs
distribution a useful model, especially in the
context of image modeling and processing. The
Gibbs random field is defined as follows:

A random field X = {X;} defined on lattice has a
Gibbs Distribution or equivalently is a Gibbs
Random Field (GRF) with respect to set of all the
cliques, if and only if its joint distribution is of the

form

P(X = w) =%e*"“‘”” (1

Utw) = 2V(@), where the clique function, or
potential function, V(@) is associated with each
clique and depends only on the values at sites in
clique c. Various types of clique functions can be
selected to formulate a wide variety of Gibbs
distributions for both discrete and continuous
random fields. 7, “temperature”, is adapted to
isolate the most probable states under the Gibbs
distribution by gradually reducing it according to
some cooling algorithm (Geman and Geman,
1984).

The neighborhood system, the associated clique
types, and the clique functions, V.(®)’s, in the
Gibbs distribution are adequately selected to
represent spatially meaningful continuity
according to the application. In this study, the
clique function to test with for the proposed
model is selected as follows:

For single pixel clique

Viw) = oy if x;in cis equal to k

For clique of “dir” type with two pixels

where the parameters assigned to each clique
type are defined according to 4 types of direction
—Bair if all x; in the clique ¢ are equal

[air otherwise (2)
between pixels (] /", ). Parameters, & and s,

V(@) ={

control the percentage of each class and clustering

of pixels in each direction, respectively.

As shown in Eq. (1), a GRF describes the global
properties of an image in terms of local properties.
With this idea, many relaxation-type algorithms
based on a Monte Carlo computation theory are
developed based on a Bayesian framework such
as Gibbs Sample (Geman and Geman, 1984). It
provides a coherent approach for processing of
images, but the computational cost for processing
of large images is expensive. The time required to
simulate increasing larger images is not linear. For
example, processing of a 1024 x 1024 image
requires greater than 4 times the time for the
simulation of a 512 X512 image, because it
requires more iterations for convergence. The
computational complexity for an N x N image is
defined as in O(NT(N)), where T(N) is a function
of the number of iterations required for
convergence. T(N) is unknown, but at least is a
linear function when N is small.

A multiresolution MRF framework defined in a
stack of images would support efficient
algorithms that start processing of images at a
coarse resolution and then progressively refine
them to finer resolutions, which would allow
global features such as region information to
propagate quickly. The problem in developing a
multiresolution MRF work is to provide consistent
model descriptions for MRFs at multiple
resolutions since a simple resolution transfor-
mation loses the Markov property. Therefore,
approximation of non-Markov fields by MRFs is
needed to model the images as MRFs at multiple
resolutions. In this study, a Markov approx-
imation for a coarser resolution field is obtained
by relating the parameters corresponding to the
MRF approximation at coarse resolutions to the
parameters at the fine resolution such that the
interaction between distant pixels is decimated as
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in the approach of normalized group study
(Gidas, 1989).

For the multiresolution approach, two major
steps are to be considered: resolution trans-
formation and projection. During the resolution
transformation, a finite sequence of coarser and
coarser grids, LY=LV | are iteratively
generated, where each Lo is obtained from the
previous grid A by coarsening it. Here,
reduced-resolution versions of a given image are
defined in an exponentially tapering ‘pyramid’ of
arrays of size oM by VAR A by M2 2 by 2.
The internal communication in this structure is
comprised of two different kinds of links: intra-
level link (horizontal) and inter-level links
(vertical). In inter-level links, the corresponding
sequence of coarse grid energy functions is
assumed to be U0—U,V-U,?.. depending on
the positive parameter H, which reflects the
decimation of bonding energy between the distant
pixels. A coarse grid Uy" is obtained iteratively
from the posterior U as follows: For the selected
conditional probability POGO1 D), which is the
probability of the gray level configuration of L?,
1) given the gray level configuration of AR
and a selected positive constant H, Uy is
iteratively computed from U" = U and the

energy function at the coarse levels is obtained by

e-Un"(e") = 3 e-Un" " PO (D x (- 1)) 3)

(")

which represents the reduced intra-level
commutation between pixels at increasing
distance.

Fig. 1 shows examples of sampling schemes,
where the remaining pixels are denoted by the
black dot and the non-sampled pixel by the empty
dot. Actually, a special sampling schemes where a
random field subsampled at the coarse resolution

still preserves the Markovian property are very

limited. For example, in the scheme (a) presented
in Fig. 1, a subsampled random field at the level 1
is still Markovian field for the first order
neighborhood since the nonsampled points are
independent (Jeng, 1989). However, the resulting
coarse image doesn’t correspond to a uniform
spatial grid and has the neighboring system
changed. In this study, the sampling scheme (b)
was selected . This sampling scheme can also
satisfy the conditional probability constraint on
the projection process. The resolution
transformation is defined as
Xi,j([) =X Zj(FU

and so,
U ()
Xij =X 2

The projection step starts at the top level and
proceeds iteratively downward to obtain the
bottom level image: first, an image is processed at
a level / and transmited to the level /-1, then
successively to the full resolution image L9, The
projection process is constrained by the realization

x via the equation

po (x(l)lx(l_”) = max P (x(l)lx(l'l)). 4
}

(Xui
For the discrete-valued field, a special, but

useful, class of conditional probability can be

e O ® O @ O

O @ O ¢ O O

®e O ® 0O & O

O ® O e O @®

(a) O The dropped point
® The remaining point

®e O ® O & O
0O 0O 0O 0 O O©
®e O @ O & O
o 0 O © 0O o

(b)

Fig. 1 Examples of sampling type resolution transformation.
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defined in the following. If P, the

conditional probability can be selected as follows:

P(I)(x(l)lx(l_l)) - ‘IE—IL”é'C{(I)-&‘j([_“ (5)
i
where
Sy=1 if i=j
{5,-,:0 if i

LY induced

This allows the configuration on
by (4) to be easily determined.

The simplest approach to guarantee this is that
the son nodes corresponding to the father node
are all assigned the same value as that of the
father node,

X" = Xumgm
where [x] takes the integer value of x. This tends to
simplify the boundaries. As an alternative
approach, a probabilistic decision considering a
reduced set of neighbors can be used. First,
according to the constraint (4), the value of the
father node is assigned to the son node sampled in
the resolution transformation, that is,

X,-‘j(l) =Xy 2j(l-l)_

Then, the remaining son nodes are determined
by the conditional probability given the reduced
neighbors. Thus, as an example of reduced
neighbors, the class value of a node in the
boundary area whose father node is adjacent to a
node of different class is decided by the joint
probability,

D

= =1y, (-1
> Xit1,j+1 'xi.j

3

P(xi,j+l(l‘l)’ Xisl,

xia Y, xi,j+2(l_|))= Pl My j(H A

xi,j+2(1_l))P (i1, j(l'])'xi, j(H), x[+2,j(17|)) X
i) (6)

1y, (-
P(xi+|,j+1( 'xz',j( )

where each probability is estimated from the data.

3. Bayesian Estimation of Parameters
for Large Images

As described before, MRF models a priori beliefs
about the continuity of image features and the
global features are defined through the local
interactions. With this concept, a Bayesian
approach is suggested as an alternative estimation
method to reasonably reduce the computational
burden in estimation of the parameters of large
images.

In the MRF model, each pixel is assumed to
have a local interaction with the specified
neighbors that is independent of the location in
the image, but depends only on the intensity
values of the given pixel and its neighbors. This
local interaction is usually assumed to be constant
over the entire image depending on the pixel
values and is defined through the parameters of
the Gibbs distribution. This implies that in some
sense, the values of the parameters reflect the
averaged values of local interactions between
neighboring pixels across the entire image.

This idea can allow a Bayesian approach for
estimating parameters of large images. Subsets of
the image, whose sizes are not too small, can be
reasonably assumed to have the same spatial
relationships as that of the entire image, if the
interaction is actually constant across the image.
That is, when subsets of the same size or different
sizes are extracted from the image, each estimated
parameter follows the parametric rule which
describes the whole image.

Suppose that the parameter set estimated from
each subset is g;. Then, flq) can be obtained from
these {q;} as a parametric function of q which
describes the local interaction over the entire
image. When the parameter set is estimated

directly from the whole image, it is considered to
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be a deterministic value describing the local
interaction of the scene. In the Bayesian approach
investigated in this study, the parameter space
which describes the local interaction observed in
the entire image is estimated as a parametric
function. A possible parameter set q* which
describes the given image is generated from this
Alg) and then, the images are processed with the
Gibbs distribution P(X|q*). Actually, some other
parameter space may share similar characteristics
and the estimation scheme may correspond to
some point of this alternative parameter space. In
this study, the multivariate normal distribution is
utilized to obtain f(q): The p-dimensional
multivariate normal density with mean vector
and positive definite covariance matrix X is of the
form,

Aql6) = l,zexp(—gq—u)’ g ()

I B
QrP)

This is denoted as N,(g, ) where p is the
number of parameters of the model. The
parameter sets estimated from n subsets of the
image, q1, q2, ..., gy, represent a random sample
from the distribution for the parameter space
corresponding to the spatial relationship between
the pixels. Maximization of the likelihood function

or log-likelihood function with respective to # and

(a) (b

%, for given the data qi, qu, ..., q,, yields the

maximum likelihood estimate.

4. Results

1) Utilization of Multiresolution Framework

In this section, the utilization of the pyramid
structure was explored with a discrete Markov
random field model proposed in Section II. Even
though the multiresolution MRF paradigm has
difficulty with the consistent model description
for MRFs at multiple resolutions as described
before, it is still an attractive framework since it
provides the method to process the image
considering the characteristics at different scales.

Fig. 2 compares the original full resolution
image and reconstructed images from a coarse
image. Fig. 2 (a) is a 1024 X 1024 subset obtained
from the classified image of the TM data covering
the Great Victoria Desert, Australia. This image
was considered to be L' and then reduced in
resolution to L (256 x 256 in size) by the
sampling scheme X,-’j(/) = X5l le«))/ which is shown
in Fig. 2 (b). Then, L9 was reconstructed from the
coarse image L? according to the constraint
described in the Section II. Fig. 2 (¢) was obtained

by the simple projection that the son nodes are all

© @

Fig. 2. Comparison of the original image and reconstructed image: (a) 1024x1024 original image (b) 256x256 coarse image (L(z))
(c) Reconstructed full resolution image by simple projection (d) Reconstructed full resolution image by probabilistic projection
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assigned the same value as that of the father node,
where the blocky boundaries are shown. Fig. 2 (d)
is an image reconstructed by the probabilistic
projection considering the neighboring pixels.
Even though the reconstructed full resolution
images have a difficulty with recovery of the exact
boundary information, this multiresolution
framework could be still useful since they still
have the global features of region information.
Then, for the boundary variation, the fuzzy
approach can be applied (Jung, 1997).

In the next example, the multiresolution MRF
framework is evaluated with the image simulated
at the full resolution and the image simulated at a
coarse resolution with the coarse grid energy
function and then refined from it to the full
resolution. Fig. 3 (a) is a 1024 X1024 image
simulated with 8=(1.0, 1.0, 1.0, 1.0), whose
estimated parameter set is with £=(1.03, 1.07, 1.07,
1.01). Fig. 3 (b) was obtained by simulation with
the estimated parameter set at the full resolution,
whose estimated values are 8=(0.99, 1.04, 0.94,
0.96). Fig. 3 (c) was obtained by simulation at a
coarse resolution, Level 2, with the estimated
parameter set 8=(1.03, 1.07, 1.07, 1.01) and H=1.1

(a)
Fig. 3. Comparison of images simulated at full resolution and at a coarse resolution using projection scheme: (a)

1024x1024 original image simulated with 5=(1.0 1.0 1.0 1.0) (b) Image simulated at full resolution {c) Image
refined from the image simulated with the estimated parameters at Level 2

(b

which was estimated from the coarse grid energy
function and projection to successively finer
resolutions. The estimated values of the resulting
full resolution image are A=(0.87, 0.91, 0.91, 0.97).
Here, it should be noted that the selected
parameter estimation method, the Least Square
Error method (LSQR) (Derin and Elliot, 1987),
might be one possible factor for the difference in
the estimated values from the original values since
the LSQR method uses the number of the 3x3
configurations existent in the scene for computing
the joint probability of a pixel and its neighbors.
That is, the change occurred around boundary
affects the estimation of parameters using the
LSQR method, even though the images all have
similar global features.

Next, the time for the full resolution process
and multiresolution framework is compared. The
total CPU time to obtain 1024 x 1024 full
resolution images, (a) and (b) on a Sun SparcUltra
1-170E was 9.6 hours and for (c) 4.3 minutes. Since
(c) has global characteristics which is visually
similar to (a) and requires much less
computational time, the multiresolution

framework could be extremely useful.

©
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2) Bayesian Approach in Parameter
Estimation for Large Images

The Bayesian approach in parameter estimation
was investigated as a means of reducing the
computational burden for large images. The
method was implemented and applied to
simulated scenes.

First, Fig. 4 (a) is 1024 X 1024 image simulated
with parameters ; = 0.0 and /3;; = 1.0 and 1000
iterations. Fig. 4 (b) correspond to the four
nonoverlapping subsets of 512X 512 in size. Table
1 compares the estimated parameters of the entire
image and its four subsets. The distribution of the
parameters, f(B), can be obtained from the
estimated parameter set {3} of the four subsets. In
this example, a univariate normal distribution
function for each S;i = hor, ver, ne, nw was used to

represent f{B) instead of the multivariate normal

(a) 1024 x 1024 image

TS

Table 1. Comparison of the estimated parameter sets of the
whole image and its four subset images

| Bror B Ba Ba
Image (a) 1.12 1.16 1.08 1.03
subset (1) 1.00 1.05 0.91 0.98
subset (2) 0.96 0.89 1.01 0.92
subset (3) 0.96 0.98 0.91 IR

subset (4) | 108 097 | 100 | 100

distribution function because the estimated
covariance between the f/s is extremely small.
The representative functions, A f), are:

Bhor = N(1.00,0.002)

Buer = N(0.98,0.002)

Pne = N(0.96,0.002)

B = N(0.98,0.001)

Bayesian estimators which can possibly

describe the local interaction over the image can

- be generated from these functions. Here are some

examples of realization generated by these A5)’s,
The images generated with the parameters
estimated directly from the whole image and the
parameters obtained from these functions are
shown in Fig. 4 for the sake of comparison. Fig. 4
(a) was generated with parameters estimated from
the image in Fig. 4 (@), B = (1.12,1.16,1.08,1.03). The
parameters estimated from this simulated image
are B = (1.11,1.21,1.15,1.13). Fig. 4 (b) is generated
as one realization of parameters obtained from the
distribution, A8)'s, § = (1.02,1.08,1.08,1.01). The

b) 512 x 512 nonoverlapping subsets of image (a)

Fig. 4. Example: a full image and its four subset images
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parameters estimated from this image are 8 =
(1.13,1.15,1.03,1.08). The two images have visually
similar characteristics. All images were obtained
with 1000 iterations. Here, it should be noted that
one reason for difference in estimated parameters
from the actual parameters might be due to the fact
that only 1000 iterations were performed. Using
this methodology, the parameters of large images
can be obtained as a possible parameter set to
describe the local interaction over the whole image.

The Bayesian parameter estimation method
was applied to the TM classmap image shown in
Fig 3. Table 2 lists the estimated parameters of the
entire image and its four non-overlapping 512 x
512 subsets. From these estimated parameters of
the subsets, the parametric function of 8 which
describes the local interaction over the entire
image was obtained using multivariate normal
distribution. The resuiting functions, f{5), are
defined with

H=(0.987,0.955,0.680,0.822)

0.014 : 0.004 : 0.002 : 0.010
0.004 : 0.006 : 0.008 : 0.001
0.002 : 0.008 : 0.014 : 0.002
0.010:0.001 : 0.002 : 0.034

=

@

Table 2. Comparison of the estimated parameter sets of the
original image and its four subset images

Bhor B Bar Bz

entire class map|  0.91 0.91 0.61 0.76
subset (1) 0.89 091 0.54 0.63
subset (2) .10 0.89 0.71 0.90
subset (3) 0.85 0.93 0.61 0.67
subset (4) .11 1.09 0.86 1.09

Here are some examples of realization

generated by the parametric function:

=096, 1.06, 0.73, 0.70), (0.90, 0.97, 0.69, 0.71),
(0.89, 0.98, 0.70, 0.75) (1.02, 0.98, (.66, 0.85),
(0.85,0.97,0.67,0.75)

The parameters estimated from the full image
are statistically considered as one realization of the
function based on the test at o = 0.05.

5. Conclusions

A range of remotely sensed data from different
sensors is widely available in many applications.
The Markov Random Field (MRF) models
characterize the stochastic properties observed in

the scene such as a large scale characteristic of a

®

Fig. 5. Mustration of the effect of Bayesian estimation (a) 1024x1024 image simulated with parameters estimated from the whole
image: Estimated parameters 8 = (1.11,1.21,1.15,1.13) (b) 1024x1024 image simulated with Bayesian estimators:

Estimated parameters 3 = (1.13,1.15,1.03,1.08)
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scene like region formation, or continuous
random variation and is usefully employed in
many problems providing a theoretically robust
approach. However, computational cost is getting
very expensive as image size increases. For
instance, Gibbs Sampler or the exchange
algorithm based on the Metropolis algorithm
requires much computational time given the large
size of such data sets.

In this research, efficent methodology to reduce
the computational burden for large images was
investigated. Multiresolution MRF framework
would support efficient algorithm that initiate
processing images at a coarse resolution and then
progressively refine them to finer resolutions,
which results in reducing the computational cost.
As shown in Section VI, where multilevel
framework was tested with the simulated data, it
is noted that it requires much less computational
time and could be a very useful approach. Here, a
non-Markov field at a coarser resolution field was
approximated to a MRF by coarsening the energy
function to reflect the decimated local interaction.
In addition, the Bayesian approach was explored
as a reasonable alternative method in parameter
estimation of large images based on the idea that
the global features are defined in term of local
interaction in Markov Random Field. Actually, the
parameter set estimated from a subset of an image
follows the parametric rule which describes the
whole image. In this study, the parameter space
which describes the local interaction observed in
the entire image was obtained as a parametric

function.
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