본 논문에서는 적외선 이미지에서 딥러닝 물체 탐지를 사용하여 유도무기의 표적 탐지 정확도 향상 방법을 연구한다. 적외선 이미지의 특성은 시간, 온도 등의 요인에 의해 영향을 받기 때문에 모델을 학습할 때 다양한 환경에서 표적 객체의 특징을 일관되게 표현하는 것이 중요하다. 이러한 문제를 해결하는 간단한 방법은 적절한 전처리 기술을 통해 적외선 이미지 내 표적 객체의 특징을 강조하고 노이즈를 줄이는 것이다. 그러나, 기존 연구에서는 적외선 영상 기반 딥러닝 모델 학습에서 전처리기법에 관한 충분한 논의가 이루어지지 못했다. 이에, 본 논문에서는 표적 객체 검출을 위한 적외선 이미지 기반 훈련에 대한 이미지 전처리 기술의 영향을 조사하는 것을 목표로 한다. 이를 위해 영상과 이미지의 전역(global) 또는 지역(local) 정보를 활용한 적외선 영상에 대한 전처리인 Min-max normalization, Z-score normalization, Histogram equalization, CLAHE (Contrast Limited Adaptive Histogram Equalization)에 대한 결과를 분석한다. 또한, 각 전처리 기법으로 변환된 이미지들이 객체 검출기 훈련에 미치는 영향을 확인하기 위해 다양한 전처리 방법으로 처리된 이미지에 대해 YOLOX 표적 검출기를 학습하고, 이에 대한 분석을 진행한다. 실험과 분석을 통해 전처리 기법들이 객체 검출기 정확도에 영향을 미친다는 사실을 알게 되었다. 특히, 전처리 기법 중에서도 CLAHE 기법을 사용해 실험을 진행한 결과가 81.9%의 mAP (mean average precision)을 기록하며 가장 높은 검출 정확도를 보임을 확인하였다.
본 논문은 무인비행장치에 탑재된 카메라를 통해 획득한 고화질의 이미지를 무인비행장치 상에서 전처리를 하여 이동통신망을 통해 서버로 전송하기 위한 시스템 및 기법에 관한 것이다. 기존의 이미지 획득 서비스용 무인비행장치의 경우, 무인비행장치에 탑재된 카메라의 외부저장장치에 획득한 이미지를 저장하고, 비행이 완료된 이후에 저장장치를 직접 옮기는 방식으로 이미지를 확인하였다. 이러한 방식의 경우, 외부저장장치를 통해 직접적으로 이미지 데이터를 확인하기 전에는 이미지 획득이나 전처리가 제대로 수행되었는지 확인할 수 없다는 한계점이 존재한다. 또한 해당 데이터는 외부저장장치에만 저장되기 때문에 데이터의 공유가 번거롭다는 단점이 존재한다. 본 논문에서는 위와 같은 문제점을 해결하기 위하여, 원격에서 이미지를 실시간으로 확인 가능한 시스템을 제안한다. 더 나아가, 무인비행장치에서의 촬영을 통한 이미지 획득 외에 지오태깅과 같은 전처리와 이동통신망을 통한 전송까지 수행이 가능한 시스템 및 방법을 제안한다.
Today, use of high resolution satellite image with at least 1m resolution is expanding into many more areas including forest, river way, city, seashore and so forth for disaster prevention. Interest in this medium is increasing among the general public due to the roll-out to the private sector as Google earth, Virtual Earth and so forth. However, pre-processing process that revises the geometrical distortion that result at the time of photographing is required in order to use high resolution satellite image. The purpose of this research is to search the most accurate GCP(Ground Control Point) information acquisition method that is used for the revision of high resolution satellite image's geometrical distortion through automated processing. Through this, it is possible to contribute to increasing the level of accuracy at the time of high resolution satellite image revision and to secure promptness.
In this paper, an algorithm is presented to recognize lane and obstacles based on highway road image. The road images obtained by a video camera undergoes a pre-processing that includes filtering, edge detection, and identification of lanes. After this pre-processing, a part of image is grouped into 27 sub-windows and fed into a three-layer feed-forward neural network. The neural network is trained to indicate the road direction and the presence of absence of an obstacle. The proposed algorithm has been tested with the images different from the training images, and demonstrated its efficacy for recognizing lane and obstacles. Based on the test results, it can be said that the algorithm successfully combines the traditional image processing and the neural network principles towards a simpler and more efficient driver warning of assistance system
This paper describes the implementation of a high speed image processing board. This image processing board is consist of a image acquisition part and a image processing part. The image acquistion part is digitizing the image input data from CIS and save it to the dual port RAM. By putting on the dual port memory between two parts, during acquistion of image, the image processing part can be effectively processing of large-volume image data. Most of all image preprocessing part are integrated in a large-scaled FPGA. We arwe using ADSP-2181 of the Analog Device Inc., LTD. for a image processing part, and using the available all memory of DSP for the large-volume image data. Especially, using of IDMA exchanges the data with the external microprocessor or the external PC, and can watch the result of image processing and acquired image. Finally, we show that an implemented image processing board used for the simulation of image retreval by the one of the typical application.
The error diffusion is good for reproducing continuous image to binary image. However the reproduction of edge characteristics is weak in power spectrum analysis of display error. It is suggested for us an edge-enhanced error-diffusion method that is included pre-processing algorithm for edge characteristic enhancement. Pre-processing algorithm is organized horizontal and vertical directional 2nd order differential values and weighting function of pre-filter. The improved Error diffusion using pre-filter, presents a good results visually which edge characteristics is enhanced. The performance of the proposed algorithm is compared with that of the conventional edge-enhanced error diffusion by measuring the RAPSD of display error, the egde correlation and the local average accordance.
Pre-existing pattern recognition techniques, in the case of character recognition, have limited on the application field. But CAI character learning system and writer's recognition system are very important parts. The application field of pre-existing system can be expanded in the content that the learning of characters and the recognition of writers in the proposed paper. In order to achieve these goals, the development contents are the following: Firstly, pre-processing method by understanding the image structure is proposed, secondly, recognition of characters are accomplished b the histogram distribution characteristics. Finally, similarity measure functions are defined from standard character pattern for matching of the input character pattern. Also the effectiveness of this system is demonstrated by experimenting the standard primitive image.
셀룰러 신경회로망(Cellular Neural Networks: CNN)은 그 구조가 간단함에도 불구하고 강력한 연산능력을 가지고 있어 영상처리에 이용되어 왔다. 그러나 실제의 대규모 영상에 포함된 화소의 양과 같은 막대한 셀들을 필요로 하는 CNN하드웨어를 구현하는 것은 불가능하다. 본 논문에서는 시 다중화 처리 기법으로 대규모 실영상을 처리할 수 있는 $5\times5$ CNN 하드웨어와 전 후 처리기를 구현하였다. 구현된 $5\times5$ CNN 하드웨어와 전 후 처리기의 성능을 평가하기 위해 $ 레나영상에 대해 윤곽선 검출을 수행하였으며, 약 4,000번의 시다중화 블록처리와 각 블록 마다 10번의 제어 펄스에 의한 파이프라인 동작에 의해 영상처리가 수행되었다. 따라서 본 논문에서 구현된 $5\times5$ CNN 하드웨어와 전 후 처리기를 실영상 처리에 이용할 수 있다.
수중영상은 수중 잡음과 낮은 해상도로 표적의 형상과 구분이 명확하지 않다. 그리고 딥러닝의 입력으로 수중영상은 전처리가 필요하며 Segmentation이 선행되어야 한다. 전처리를 하여도 표적은 명확하지 않으며 딥러닝에 의한 탐지, 식별의 성능도 높지 않을 수 있다. 따라서 표적을 구분하며 명확하게 하는 작업이 필요하다. 본 연구에서는 수중영상에서 표적 그림자의 중요성을 확인하고 그림자에 의한 물체 탐지 및 표적 영역 획득, 그리고 수중배경이 없는 표적과 그림자만의 형상이 담긴 데이터를 생성하며 더 나아가 픽셀값이 일정하지 않은 표적과 그림자 영상을 표적은 흰색, 그림자는 흑색, 그리고 배경은 회색의 3-모드의 영상으로 변환하는 과정을 제시한다. 이를 통해 딥러닝의 입력으로 명확히 전처리된 판별이 용이한 영상을 제공할 수 있다. 또한 처리는 Open Source Computer Vision(OpenCV)라이브러리의 영상처리 코드를 사용했으면 처리 속도도 역시 실시간 처리에 적합한 결과를 얻었다.
대한원격탐사학회 2008년도 International Symposium on Remote Sensing
/
pp.88-91
/
2008
The COMS IMPS (Communication Ocean and Meteorological Satellite IMage Pre-processing Subsystem) is developed for image pre-processing of COMS. For a test of the COMS IMPS, 7 support software are developed in KARI GS using simulated MI/GOCI WB (Wide-Band) data; COMS Fill Adder, MI (Meteorological Imager) CADU generator, GOCI (Geostationary Ocean Colour Imager) CADU generator, COMS CADU combiner, MI SD (Sensor Data) analyzer, GOCI SD analyzer, and COMS DM (Decomposition Module) test harness. This paper explains functions of developed support software and the COMS IMPS test using those software.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.