• 제목/요약/키워드: Image Pattern Recognition

검색결과 615건 처리시간 0.024초

실시간 손동작 인식을 위한 동작 평면 추정 (Motion Plane Estimation for Real-Time Hand Motion Recognition)

  • 정승대;장경호;정순기
    • 정보처리학회논문지B
    • /
    • 제16B권5호
    • /
    • pp.347-358
    • /
    • 2009
  • 손동작을 인식하는 연구가 오랫동안 이뤄져 왔지만 대개의 시스템들이 값비싼 깊이 카메라를 사용하거나 여러 개의 카메라를 사용해 분석하는 등 그 비용이 크며 작동이 가능한 작업 공간이 지극히 제한적이었다. 본 논문에서는 가전제품을 원격 제어하기 위한 목적으로 두 개의 회전 모터를 사용해 작업 공간을 확대하고 저렴한 일반 카메라를 사용해서 효율적으로 손동작을 인식하기 위한 시스템을 제안한다. 이 시스템은 입력된 카메라의 자세 정보와 이미지상의 2차원적 손가락 위치 정보를 이용하여 3차원 궤적을 추정하고 이를 동작 평면으로 투영시켜 의미 있는 선형 동작 패턴으로 복원한다. 또한 본 논문에서는 개발된 시스템을 테스트하여 주어진 목적에 맞는 정확도를 가지는 작업 영역을 정의한다.

지역 특징을 사용한 실시간 객체인식 (Real-Time Object Recognition Using Local Features)

  • 김대훈;황인준
    • 전기전자학회논문지
    • /
    • 제14권3호
    • /
    • pp.224-231
    • /
    • 2010
  • 이미지에서의 자동 객체 인식은 컴퓨터 비젼 및 패턴 분석을 포함한 많은 분야에서 아주 중요한 이슈중의 하나이다. 특히, 최근 스마트폰과 같은 개인용 이동형 단말기가 빠르게 보급되면서, 그러한 기술들을 지원할 필요성이 커지게 되었다. 이러한 단말기들은 대개 카메라, GPS, 가속도 센서 등과 같은 장치들을 갖추고 있으며 사용자들에게 다양한 서비스를 편리한 인터페이스를 통해 제공하고 있다. 하지만 제한된 시스템 자원 때문에 처리속도가 비교적 느리다는 문제점을 가지고 있다. 본 논문에서 우리는 전처리 과정과 단순 지역 특징을 기반으로 한 객체 인식 성능 향상 기법을 제안한다. 전처리 단계에서는, 우선 객체 종류별 이미지로부터 각 객체의 특징이라고 생각되는 부분을 자동으로 판별하고 비슷한 부분끼리 분류한 다음 이들의 특징을 추출하고 학습한다. 질의 영상에 대해 우선 지역 특징 후보들을 파악한 다음 전처리 과정에서 학습된 정보와 비교하여 객체인식을 하게 된다. 실험을 통하여 제안된 기법의 객체 인식 성능을 보인다.

컨볼루셔널 신경망과 케스케이드 안면 특징점 검출기를 이용한 얼굴의 특징점 분류 (Facial Point Classifier using Convolution Neural Network and Cascade Facial Point Detector)

  • 유제훈;고광은;심귀보
    • 제어로봇시스템학회논문지
    • /
    • 제22권3호
    • /
    • pp.241-246
    • /
    • 2016
  • Nowadays many people have an interest in facial expression and the behavior of people. These are human-robot interaction (HRI) researchers utilize digital image processing, pattern recognition and machine learning for their studies. Facial feature point detector algorithms are very important for face recognition, gaze tracking, expression, and emotion recognition. In this paper, a cascade facial feature point detector is used for finding facial feature points such as the eyes, nose and mouth. However, the detector has difficulty extracting the feature points from several images, because images have different conditions such as size, color, brightness, etc. Therefore, in this paper, we propose an algorithm using a modified cascade facial feature point detector using a convolutional neural network. The structure of the convolution neural network is based on LeNet-5 of Yann LeCun. For input data of the convolutional neural network, outputs from a cascade facial feature point detector that have color and gray images were used. The images were resized to $32{\times}32$. In addition, the gray images were made into the YUV format. The gray and color images are the basis for the convolution neural network. Then, we classified about 1,200 testing images that show subjects. This research found that the proposed method is more accurate than a cascade facial feature point detector, because the algorithm provides modified results from the cascade facial feature point detector.

트리 구조를 이용한 수식 인식 연구 (A Study on Equation Recognition Using Tree Structure)

  • 박병준;김현식;김완태
    • 한국정보전자통신기술학회논문지
    • /
    • 제11권4호
    • /
    • pp.340-345
    • /
    • 2018
  • 수식은 일반 문장에 비해 복잡한 구조와 다양한 문자와 기호가 사용되어 단순한 키보드 입력만으로는 모든 문자 집합을 입력할 수 없어 한글이나 워드 같은 문서편집기 내에서도 자체적으로 구현된 수식 편집기를 사용하고 있다. 수식을 올바르게 표현하기 위해 구문을 해석할 수 있는 의미가 될 수 있는 사전 학습 정보가 필요하다. 문자가 입력되더라도 크기와 위치 서로간의 관계에 따라 다른 수식으로 표현될 수 있기 때문이다. 즉 표현될 위치와 크기 등 문자와 기호들 간의 상호관계를 고려하여 수식의 형태를 트리 모델로 표현한다. 문자인식 응용의 한 분야로 문자나 기호(부호)를 인식하는 기술을 이미 널리 알려졌지만, 수식을 입력과 해석하는 방법은 일반적인 텍스트에 비해 복잡한 분석 과정이 필요하다. 본 논문에서는 수식의 문자를 인식하고 표현되는 위치와 크기의 결정을 빠르게 해석하는 수식 인식기를 구현하였다.

물체 검출 컨벌루션 신경망 설계를 위한 효과적인 네트워크 파라미터 추출 ((Searching Effective Network Parameters to Construct Convolutional Neural Networks for Object Detection))

  • 김누리;이동훈;오성회
    • 정보과학회 논문지
    • /
    • 제44권7호
    • /
    • pp.668-673
    • /
    • 2017
  • 최근 몇 년간 딥러닝(deep learning)은 음성 인식, 영상 인식, 물체 검출을 비롯한 다양한 패턴인식 분야에서 혁신적인 성능 발전을 거듭해왔다. 그에 비해 네트워크가 어떻게 작동하는지에 대한 깊은 이해는 잘 이루어지지 않고 있다. 본 논문은 효과적인 신경망 네트워크를 구성하기 위해 네트워크 파라미터들이 신경망 내부에서 어떻게 작동하고, 어떤 역할을 하고 있는지 분석하였다. Faster R-CNN 네트워크를 기반으로 하여 신경망의 과적합(overfitting)을 막는 드랍아웃(dropout) 확률과 앵커 박스 크기, 그리고 활성 함수를 변화시켜 학습한 후 그 결과를 분석하였다. 또한 드랍아웃과 배치 정규화(batch normalization) 방식을 비교해보았다. 드랍아웃 확률은 0.3일 때 가장 좋은 성능을 보였으며 앵커 박스의 크기는 최종 물체 검출 성능과 큰 관련이 없다는 것을 알 수 있었다. 드랍아웃과 배치 정규화 방식은 서로를 완전히 대체할 수는 없는 것을 확인할 수 있었다. 활성화 함수는 음수 도메인의 기울기가 0.02인 leaky ReLU가 비교적 좋은 성능을 보였다.

그래프간 유사도 측정에 의한 음악 기호 인식 (A Musical Symbol recognition By Using Graphical Distance Measures)

  • 전정우;장경식;허경용;김재희
    • 한국음향학회지
    • /
    • 제15권1호
    • /
    • pp.54-60
    • /
    • 1996
  • 패턴인식이나 영상이해의 영역에서는 같은 물체라도 잡음이나 왜곡에 의하여 모양이 훼손되어 다른 물체로 인식될 수 있다. 따라서 물체 인식에서는 두 물체가 완전히 동일한지 여부를 판정하는 것보다는 두 물체가 서로 어느 정도 유사한가를 판정하는 것이 중요한 경우가 많다. 이 논문에서는 훼손된 기호의 인식을 위하여 기호를 표현하는 두 그래프 표현간의 유사도 측정을 이용한 기호 인식 방법을 제안하였다. 제안한 기호 인식 방법은 런 그래프(run graph)를 이용하여 인식 대상 기호를 노드(node)와 에지(edge)로 구성되는 그래프 형태로 표현하고 임베딩 변환(embedding transform)을 포함한 생성 규칙을 사용하여 입력 그래프를 참조 모델 그래프와 유사한 형태로 변형시킨다. 이러한 과정에서 변형된 최종 그래프와 모델 그래프간의 구조적 유사성과 변형시 사용된 생성 규칙의 수를 이용하여 그래프간 유사도를 측정함으로써 기호를 인식하였으며 이의 응용 분야로서 악보에서 비음표 기호 인식에 사용하였다. 이 결과 96%의 인식률을 얻었으며 기호가 심하게 훼손되지 않은 경우에는 거의 인식에 성공하였다.

  • PDF

커브형 집적 영상에서 DPM 기반의 비선형 상관기를 이용한 3D 물체 인식 향상 (Improved recognition of 3D objects using nonlinear correlator based on direct pixel mapping in curving-effective integral imaging)

  • 이준재;신동학;이병국
    • 한국정보통신학회논문지
    • /
    • 제17권1호
    • /
    • pp.190-196
    • /
    • 2013
  • 커브형 집적 영상 기술은 렌즈 배열을 이용하여 3D 영상을 공간에 쉽게 표현할 수 있는 기술이며, 넓은 관측각을 제공한다. 본 논문에서는 커브형 집적 영상에서 물체의 인식 향상을 위하여 다이렉트 픽셀 매핑 (DPM) 방법 기반의 비선형 상관기를 제안한다. 제안하는 비선형 상관기는 커브형 집적 영상 시스템에서 장애물에 가려진 물체로부터 픽업된 요소 영상을 DPM 방법을 통하여 해상도가 향상된 새로운 요소 영상을 생성한다. 새로운 생성된 요소 영상을 사용하여 복원한 3D 영상들과 참조 영상간의 비선형 상호상관을 이용하여 3D 물체의 인식 성능 향상시킨다. 제안된 방법의 유용함을 보이기 위하여 기초적인 상관 관계 실험을 수행하고 기존의 방법과의 비교 결과를 보고한다.

인공지능 딥러링 학습 플랫폼에 관한 선행연구 고찰 (A Review on Deep Learning Platform for Artificial Intelligence)

  • 진찬용;신성윤;남수태
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2019년도 춘계학술대회
    • /
    • pp.169-170
    • /
    • 2019
  • 인공지능이 글로벌 경쟁력 원천 기술로 부각되면서 정부도 자율주행차, 드론, 로봇 등 미래 신산업의 기반 기술이 되는 인공지능을 전략적으로 육성하고 있다. 국내 인공지능 연구 및 서비스는 네이버와 카카오를 중심으로 출시되었으나 해외에 비하면 규모나 수준이 미약한 편이다. 최근, 딥러닝 (deep learning)은 최근 음성인식과 영상인식을 비롯한 다양한 패턴인식 분야에서 혁신적인 성능을 기록하면서 많은 연구가 진행되고 있다. 그 뿐만 아니라 딥러닝은 초창기부터 산업계의 큰 관심을 끌어 구글이나 마이크로소프트, 삼성전자 등 글로벌 정보기술 회사에서 상용제품에 딥러닝 기술을 성공적으로 적용하고 있고 계속 연구개발을 진행하고 있어 대중매체에서도 관심을 가지고 주목하고 있다. 이러한 선행연구를 바탕으로 주목 받고 있는 인공지능에 대해 살펴보도록 하겠다.

  • PDF

이기종 센서의 호환을 위한 지문 특징점 보정 알고리즘 개발 (Development of Minutiae-level Compensation Algorithms for Interoperable Fingerprint Recognition)

  • 장지현;김학일
    • 정보보호학회논문지
    • /
    • 제17권5호
    • /
    • pp.39-53
    • /
    • 2007
  • 본 연구의 목적은 다양한 이기종 지문입력 센서의 호환을 위한 지문 특징점 보정 알고리즘 개발이다. 본 연구에서는 이기종 지문입력 센서간의 매칭을 위하여 영상 기반의 센서 평가 방법에 따라 Ink-Stamped방법과 인조패턴 방법을 이용하여 평가하였다. 본 연구에서 제안한 보정 알고리즘은 영상 레벨과 템플릿 레벨 모두에서 보정 가능하며, 상대 센서의 사양에 맞도록 보정하는 상대적 해상도 보정 방법과 500, DPI 종횡비(Aspect Ratio)가 1인 사양에 맞도록 보정하는 공통해상도 보정 방법이다. 특히 템플릿 레벨에서의 보정은 특징점이 보정됨에 따라 방향 보정이 변하게 되는데 이를 보정하기 위하여 단위 벡터 방법을 제안한다. 따라서 제안한 보정 알고리즘을 이용한 결과 보정 전 보다 보정 후의 EER 에러가 전체적으로 64.8% 개선됨을 확인 할 수 있었다. 본 연구를 통해 이기종 지문 인식 시스템 통합 시 요구되어지는 비용을 최소화하고 최종 사용자의 편의성을 도모할 수 있으며, 나아가 국가 간 바이오 정보 공유 및 출입국 관리 시스템에 적용하기에도 유용할 것이다.

이미지 타입의 ECG 데이터를 사용한 CNN 모델 기반 부정맥 분류 (CNN Model-based Arrhythmia Classification using Image-typed ECG Data)

  • 방연석;장명수;홍유식;이상석;유준상;이우범
    • 융합신호처리학회논문지
    • /
    • 제24권4호
    • /
    • pp.205-212
    • /
    • 2023
  • 심장 질환 가운데에서 부정맥은 방치할 경우에 뇌졸중, 심장 마비, 심부전과 같은 심각한 합병증이 발생할 수 있기 때문에 지속적이고 정확한 심전도 관리에 의한 건강 상태의 확인은 임상적 치료에 매우 중요한 요소이다. 그러나, 심전도(Electrocardiogram; ECG) 데이터의 정확한 해석은 전적으로 의료 전문가에 의존하기 때문에 부가적인 시간과 비용을 요구한다. 따라서 본 논문에서는 라이프로그 기반의 비정상적인 맥파 파형의 분석을 통한 의료 플랫폼 개발을 목적으로 부정맥 인식 모듈을 제안한다. 제안하는 방법은 ECG 데이터를 시계열 데이터가 아닌 이미지 형식으로 처리하여 시각적 패턴 인식 기술을 적용한 후, CNN 모델을 이용하여 부정맥을 탐지하는 방법을 제안한다. 본 논문에서 제안한 ECG 데이터의 이미지 타입 변환에 의한 CNN 모델의 부정맥 분류의 유효성 검증하기 위해 MIT-BIH 부정맥 데이터셋을 사용한 결과, 97%의 정확도를 보였다.