• Title/Summary/Keyword: Image Matching of Medical Image

Search Result 105, Processing Time 0.031 seconds

Development of a Brain Phantom for Multimodal Image Registration in Radiotherapy Treatment Planning

  • H. S. Jin;T. S. Suh;R. H. Juh;J. Y. Song;C. B. Y. Choe;Lee, H .G.;C. Kwark
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.450-453
    • /
    • 2002
  • In radiotherapy treatment planning, it is critical to deliver the radiation dose to tumor and protect surrounding normal tissue. Recent developments in functional imaging and radiotherapy treatment technology have been raising chances to control tumor saving normal tissues. A brain phantom which could be used for image registration technique of CT-MR and CT-SPECT images using surface matching was developed. The brain phantom was specially designed to obtain imaging dataset of CT, MR, and SPECT. The phantom had an external frame with 4 N-shaped pipes filled with acryl rods, Pb rods for CT, MR, and SPECT imaging, respectively. 8 acrylic pipes were inserted into the empty space of the brain phantom to be imaged for geometric evaluation of the matching. For an optimization algorithm of image registration, we used Downhill simplex algorithm suggested as a fast surface matching algorithm. Accuracy of image fusion was assessed by the comparison between the center points of the section of N-shaped bars in the external frame and the inserted pipes of the phantom and minimized cost functions of the optimization algorithm. Technique with partially transparent, mixed images using color on gray was used for visual assessment of the image registration process. The errors of image registration of CT-MR and CT-SPECT were within 2mm and 4mm, respectively. Since these errors were considered within a reasonable margin from the phantom study, the phantom is expected to be used for conventional image registration between multimodal image datasets..

  • PDF

A study of registration algorithm based on 'Chamfer Matching' and 'Mutual Information Maximization' for anatomical image and nuclear medicine functional image ('Chamfer Matching'과 'Mutual Information Maximization' 알고리즘을 이용한 해부학적 영상과 핵의학 기능영상의 정합 연구)

  • Yang, Hee-Jong;Juh, Ra-hyeong;Song, Ju-Young;Suh, Tae-Suk
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2004.11a
    • /
    • pp.104-107
    • /
    • 2004
  • In this study, using brain phantom for multi-modality imaging, we acquired CT, MR and PET images and performed registration of these anatomical images and nuclear medicine functional images. The algorithms and program applied for registration were Chamfer Matching and Mutual Information Maximization algorithm which have been using frequently in clinic and verified accuracy respectively. In result, both algorithms were useful methods for CT-MR, CT-PET and MR-PET. But Mutual Information Maximization was more effective algorithm for low resolution image as nuclear medicine functional image.

  • PDF

An X-ray Image Panorama System Using Robust Feature Matching and Per ception-Based Image Enhancement

  • Wang, Weiwei;Gwun, Oubong
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.5
    • /
    • pp.569-576
    • /
    • 2012
  • This paper presents an x-ray medical image panorama system which can overcome the smallness of the images that exist on a source computer during remote medical processing. In the system, after the standard medical image format DICOM is converted to the PC standard image format, a MSR algorithm is used to enhance X-ray images of low quality. Then SURF and Multi-band blending are applied to generate a panoramic image. Also, this paper evaluates the proposed SURF based system through the average gray value error and image quality criterion with X-ray image data by comparing with a SIFT based system. The results show that the proposed system is superior to SIFT based system in image quality.

Efficient Image Stitching Using Fast Feature Descriptor Extraction and Matching (빠른 특징점 기술자 추출 및 정합을 이용한 효율적인 이미지 스티칭 기법)

  • Rhee, Sang-Burm
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.1
    • /
    • pp.65-70
    • /
    • 2013
  • Recently, the field of computer vision has been actively researched through digital image which can be easily generated as the development and expansion of digital camera technology. Especially, research that extracts and utilizes the feature in image has been actively carried out. The image stitching is a method that creates the high resolution image using features extract and match. Image stitching can be widely used in military and medical purposes as well as in variety fields of real life. In this paper, we have proposed efficient image stitching method using fast feature descriptor extraction and matching based on SURF algorithm. It can be accurately, and quickly found matching point by reduction of dimension of feature descriptor. The feature descriptor is generated by classifying of unnecessary minutiae in extracted features. To reduce the computational time and efficient match feature, we have reduced dimension of the descriptor and expanded orientation window. In our results, the processing time of feature matching and image stitching are faster than previous algorithms, and also that method can make natural-looking stitched image.

Texture Feature Extractor Based on 2D Local Fourier Transform (2D 지역푸리에변환 기반 텍스쳐 특징 서술자에 관한 연구)

  • Saipullah, Khairul Muzzammil;Peng, Shao-Hu;Kim, Hyun-Soo;Kim, Deok-Hwan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.106-109
    • /
    • 2009
  • Recently, image matching becomes important in Computer Aided Diagnosis (CAD) due to the huge amount of medical images. Specially, texture feature is useful in medical image matching. However, texture features such as co-occurrence matrices can't describe well the spatial distribution of gray levels of the neighborhood pixels. In this paper we propose a frequency domain-based texture feature extractor that describes the local spatial distribution for medical image retrieval. This method is based on 2D Local Discrete Fourier transform of local images. The features are extracted from local Fourier histograms that generated by four Fourier images. Experimental results using 40 classes Brodatz textures and 1 class of Emphysema CT images show that the average accuracy of retrieval is about 93%.

Accuracy Evaluation of Three-Dimensional Multimodal Image Registration Using a Brain Phantom (뇌팬톰을 이용한 삼차원 다중영상정합의 정확성 평가)

  • 진호상;송주영;주라형;정수교;최보영;이형구;서태석
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.33-41
    • /
    • 2004
  • Accuracy of registration between images acquired from various medical image modalities is one of the critical issues in radiation treatment planing. In this study, a method of accuracy evaluation of image registration using a homemade brain phantom was investigated. Chamfer matching of CT-MR and CT-SPECT imaging was applied for the multimodal image registration. The accuracy of image correlation was evaluated by comparing the center points of the inserted targets of the phantom. The three dimensional root-mean-square translation deviations of the CT-MR and CT-SPECT registration were 2.1${\pm}$0.8 mm and 2.8${\pm}$1.4 mm, respectively. The rotational errors were < 2$^{\circ}$ for the three orthogonal axes. These errors were within a reasonable margin compared with the previous phantom studies. A visual inspection of the superimposed CT-MR and CT- SPECT images also showed good matching results.

Algorithm for Extract Region of Interest Using Fast Binary Image Processing (고속 이진화 영상처리를 이용한 관심영역 추출 알고리즘)

  • Cho, Young-bok;Woo, Sung-hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.4
    • /
    • pp.634-640
    • /
    • 2018
  • In this paper, we propose an automatic extraction algorithm of region of interest(ROI) based on medical x-ray images. The proposed algorithm uses segmentation, feature extraction, and reference image matching to detect lesion sites in the input image. The extracted region is searched for matching lesion images in the reference DB, and the matched results are automatically extracted using the Kalman filter based fitness feedback. The proposed algorithm is extracts the contour of the left hand image for extract growth plate based on the left x-ray input image. It creates a candidate region using multi scale Hessian-matrix based sessionization. As a result, the proposed algorithm was able to split rapidly in 0.02 seconds during the ROI segmentation phase, also when extracting ROI based on segmented image 0.53, the reinforcement phase was able to perform very accurate image segmentation in 0.49 seconds.

Fast Image Stitching Based on Improved SURF Algorithm Using Meaningful Features (의미 있는 특징점을 이용한 향상된 SURF 알고리즘 기반의 고속 이미지 스티칭 기법)

  • Ahn, Hyo-Chang;Rhee, Sang-Burm
    • The KIPS Transactions:PartB
    • /
    • v.19B no.2
    • /
    • pp.93-98
    • /
    • 2012
  • Recently, we can easily create high resolution images with digital cameras for high-performance and make use them at variety fields. Especially, the image stitching method which adjusts couple of images has been researched. Image stitching can be used for military purposes such as satellites and reconnaissance aircraft, and computer vision such as medical image and the map. In this paper, we have proposed fast image stitching based on improved SURF algorithm using meaningful features in the process of images matching after extracting features from scenery image. The features are extracted in each image to find out corresponding points. At this time, the meaningful features can be searched by removing the error, such as noise, in extracted features. And these features are used for corresponding points on image matching. The total processing time of image stitching is improved due to the reduced time in searching out corresponding points. In our results, the processing time of feature matching and image stitching is faster than previous algorithms, and also that method can make natural-looking stitched image.

A Study on Skin Image Matching for Efficacy Evaluation of Skin Cosmetics and Medical Supplies (피부 화장품 및 의약품 효능 평가를 위한 피부영상 매칭에 관한 연구)

  • Cho, Sung-Chan;Lee, Ki-Jung;Whangbo, Taeg-Keun
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2006.11a
    • /
    • pp.47-51
    • /
    • 2006
  • As the recent announcement of the functional cosmetics law, the need of studies on efficacy evaluation of skin related cosmetics and medical supplies has grown. Especially to identify skin improvement, we have to compare the exact parts of the skin, however up to now it is compared only by image matching that is appeared to the human eye. This study proposes the automatical image matching system for improving the accuracy of evaluation a skin improvement. Firstly we define the feature of the skin pores and wrinkles, and extract anticipation region from skin images. And then, we calculate moments for each extracted regions and classify them as pores and wrinkles. After that, we calculate the vector by computing centroids between each regions. Through this process, we compare the vector similarities and perform the matching between existing image and reference image. To verify the efficiency of the algorithm several experiments are conducted.

  • PDF

Automated 2D/3D Image Matching Technique with Dual X-ray Images for Estimation of 3D In Vivo Knee Kinematics

  • Kim, Yoon-Hyuk;Phong, Le Dinh;Kim, Kyung-Soo;Kim, Tae-Seong
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.6
    • /
    • pp.431-435
    • /
    • 2008
  • Quantitative information of a three dimensional(3D) kinematics of joint is very useful in knee joint surgery, understanding how knee kinematics related to joint injury, impairment, surgical treatment, and rehabilitation. In this paper, an automated 2D/3D image matching technique was developed to estimate the 3D in vivo knee kinematics using dual X-ray images. First, a 3D geometric model of the knee was reconstructed from CT scan data. The 3D in vivo position and orientation of femoral and tibial components of the knee joint could be estimated by minimizing the pixel by pixel difference between the projection images from the developed 3D model and the given X-ray images. The accuracy of the developed technique was validated by an experiment with a cubic phantom. The present 2D/3D image matching technique for the estimation of in vivo joint kinematics could be useful for pre-operative planning as well as post-operative evaluation of knee surgery.