• 제목/요약/키워드: Image Index

검색결과 1,359건 처리시간 0.027초

Feasibility Study on FSIM Index to Evaluate SAR Image Co-registration Accuracy (SAR 영상 정합 정확도 평가를 위한 FSIM 인자 활용 가능성)

  • Kim, Sang-Wan;Lee, Dongjun
    • Korean Journal of Remote Sensing
    • /
    • 제37권5_1호
    • /
    • pp.847-859
    • /
    • 2021
  • Recently, as the number of high-resolution satellite SAR images increases, the demand for precise matching of SAR imagesin change detection and image fusion is consistently increasing. RMSE (Root Mean Square Error) values using GCPs (Ground Control Points) selected by analysts have been widely used for quantitative evaluation of image registration results, while it is difficult to find an approach for automatically measuring the registration accuracy. In this study, a feasibility analysis was conducted on using the FSIM (Feature Similarity) index as a measure to evaluate the registration accuracy. TerraSAR-X (TSX) staring spotlight data collected from various incidence angles and orbit directions were used for the analysis. FSIM was almost independent on the spatial resolution of the SAR image. Using a single SAR image, the FSIM with respect to registration errors was analyzed, then use it to compare with the value estimated from TSX data with different imaging geometry. FSIM index slightly decreased due to the differencesin imaging geometry such as different look angles, different orbit tracks. As the result of analyzing the FSIM value by land cover type, the change in the FSIM index according to the co-registration error was most evident in the urban area. Therefore, the FSIM index calculated in the urban was mostsuitable for determining the accuracy of image registration. It islikely that the FSIM index has sufficient potential to be used as an index for the co-registration accuracy of SAR image.

Assessment of The Luminance Distribution from Daylighting window by Using Image Processing Methodology (이미지 프로세싱 기법을 활용한 채광창의 휘도분포 평가)

  • Park, Jong Myung;Lim, Hong Soo;Kim, Jeong Tai;Kim, Gon
    • KIEAE Journal
    • /
    • 제12권5호
    • /
    • pp.77-84
    • /
    • 2012
  • Daylighting is the controlled admission of natural light into a space, reducing electric lighting and saving energy. By providing a direct link to the dynamic and perpetually evolving patterns of outdoor illumination, daylighting helps create a visually stimulating and comfort environment for building occupants, while reducing energy costs. Especially, however, glare is the most important factor in daylighting, which is issued by incoming direct sunlight into windows. This study analyzed the discomfort glare on a daylighting window by using Image processing methodology and found a solution to problems with glare source of occupants. There are several ways to evaluate discomfort glare such as UGR (Unified Glare Rating) of CIE, DGI (Daylight Glare Index, Hopkinson, 1972) and VCP (Visual Comfort Probability) of IES. These are used to apply to the relatively little artificial light source and they cannot cover discomfort glare from a real daylighting window. In this regarding, this paper aimed to calculate DGI index of the real daylighting window in a experimental space by using image processing methodology. The variables and outcomes are luminance distribution of non-shading window, effect of venetian blind installed on the window and locations related to position index of DGI.

A Differential Index Assignment Scheme for Tree-Structured Vector Quantization (나무구조 벡터양자화 기반의 차분 인덱스 할당기법)

  • 한종기;정인철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제28권2C호
    • /
    • pp.100-109
    • /
    • 2003
  • A differential index assignment scheme is proposed for the image encoding system in which a variable-length tree-structured vector quantizer is adopted. Each source vector is quantized into a terminal node of VLTSVQ and each terminal node is represented as a unique binary vector. The proposed index assignment scheme utilizes the correlation between interblocks of the image to increase the compression ratio with the image quality maintained. Simulation results show that the proposed scheme achieves a much higher compression ratio than the conventional one does and that the amount of the bit rate reduction of the proposed scheme becomes large as the correlation of the image becomes large. The proposed encoding scheme can be effectively used to encode R images whose pixel values we, in general, highly correlated with those of the neighbor pixels.

Color Image Enhancement Based on Adaptive Nonlinear Curves of Luminance Features

  • Cho, Hosang;Kim, Geun-Jun;Jang, Kyounghoon;Lee, Sungmok;Kang, Bongsoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제15권1호
    • /
    • pp.60-67
    • /
    • 2015
  • This paper proposes an image-dependent color image enhancement method that uses adaptive luminance enhancement and color emphasis. It effectively enhances details of low-light regions while maintaining well-balanced luminance and color information. To compare the structure similarity and naturalness, we used the tone mapped image quality index (TMQI). The proposed method maintained better structure similarity in the enhanced image than did the space-variant luminance map (SVLM) method or the adaptive and integrated neighborhood dependent approach for nonlinear enhancement (AINDANE). The proposed method required the smallest computation time among the three algorithms. The proposed method can be easily implemented using the field-programmable gate array (FPGA), with low hardware resources and with better performance in terms of similarity.

Adaptive Threshold Determination Using Global and local Fuzzy Measures

  • Jin, Mun-Gwang;Woo, Dong-Min;Lee, Kyu-Wong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 한국퍼지및지능시스템학회 2002년도 추계학술대회 및 정기총회
    • /
    • pp.333-336
    • /
    • 2002
  • This paper presents a new image segmentation method using fuzzy measures which reflect the local property of an image as well as the global property of an image An image is globally segmented into the crisp region and the ambiguous region in terms of the Index of fuzziness measured over all pixels of an image. The ambiguous region is luther partitioned into background and object in terms of the index of fuzziness computed over the set of neighboring pixels reflecting the local property most. From the experimental results, this method shows the effective ambiguity handling capability in segmenting an image.

Water body extraction in SAR image using water body texture index

  • Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • 제31권4호
    • /
    • pp.337-346
    • /
    • 2015
  • Water body extraction based on backscatter information is an essential process to analyze floodaffected areas from Synthetic Aperture Radar (SAR) image. Water body in SAR image tends to have low backscatter values due to homogeneous surface of water, while non-water body has higher backscatter values than water body. Non-water body, however, may also have low backscatter values in high resolution SAR image such as Kompsat-5 image, depending on surface characteristic of the ground. The objective of this paper is to present a method to increase backscatter contrast between water body and non-water body and also to remove efficiently misclassified pixels beyond true water body area. We create an entropy image using a Gray Level Co-occurrence Matrix (GLCM) and classify the entropy image into water body and non-water body pixels by thresholding of the entropy image. In order to reduce the effect of threshold value, we also propose Water Body Texture Index (WBTI), which measures simultaneously the occurrence of repeated water body pixel pair and the uniformity of water body in the binary entropy image. The proposed method produced high overall accuracy of 99.00% and Kappa coefficient of 90.38% in water body extraction using Kompsat-5 image. The accuracy analysis indicates that the proposed WBTI method is less affected by the choice of threshold value and successfully maintains high overall accuracy and Kappa coefficient in wide threshold range.

Similarity-Based Subsequence Search in Image Sequence Databases (이미지 시퀀스 데이터베이스에서의 유사성 기반 서브시퀀스 검색)

  • Kim, In-Bum;Park, Sang-Hyun
    • The KIPS Transactions:PartD
    • /
    • 제10D권3호
    • /
    • pp.501-512
    • /
    • 2003
  • This paper proposes an indexing technique for fast retrieval of similar image subsequences using the multi-dimensional time warping distance. The time warping distance is a more suitable similarity measure than Lp distance in many applications where sequences may be of different lengths and/or different sampling rates. Our indexing scheme employs a disk-based suffix tree as an index structure and uses a lower-bound distance function to filter out dissimilar subsequences without false dismissals. It applies the normaliration for an easier control of relative weighting of feature dimensions and the discretization to compress the index tree. Experiments on medical and synthetic image sequences verify that the proposed method significantly outperforms the naive method and scales well in a large volume of image sequence databases.

Small Target Detection Method under Complex FLIR Imagery (복잡한 FLIR 영상에서의 소형 표적 탐지 기법)

  • Lee, Seung-Ik;Kim, Ju-Young;Kim, Ki-Hong;Koo, Bon-Ho
    • Journal of Korea Multimedia Society
    • /
    • 제10권4호
    • /
    • pp.432-440
    • /
    • 2007
  • In this paper, we propose a small target detection algorithm for FLIR image with complex background. First, we compute the motion information of target from the difference between the current frame and the created background image. However, the slow speed of target cause that it has the very low gray level value in the difference image. To improve the gray level value, we perform the local gamma correction for difference image. So, the detection index is computed by using statistical characteristics in the improved image and then we chose the lowest detection index a true target. Experimental results show that the proposed method has significantly the good detection performance.

  • PDF

Implementation of the adaptive Local Sigma Filter by the luminance for reducing the Noises created by the Image Sensor (이미지 센서에 의해 발생하는 노이즈 제거를 위한 영상의 조도에 따른 적응적 로컬 시그마 필터의 구현)

  • Kim, Byung-Hyun;Kwak, Boo-Dong;Han, Hag-Yong;Kang, Bong-Soon;Lee, Gi-Dong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • 제11권3호
    • /
    • pp.189-196
    • /
    • 2010
  • In this paper, we proposed the adaptive local sigma filter reducing noises generated by an image sensor. The small noises generated by the image sensor are amplified by increased an analog gain and an exposure time of the image sensor together with information. And the goal of this work was the system design that is reduce the these amplified noises. Edge data are extracted by Flatness Index Map algorithm. We made the threshold adaptively changeable by the luminance average in this algorithm that extracts the edge data not in high luminance, but just low luminance. The Local Sigma Filter performed only about the edge pixel that were extracted by Flatness Index Map algorithm. To verify the performance of the designed filter, we made the Window test program. The hardware was designed with HDL language. We verified the hardware performance of Local Sigma Filter system using FPGA Demonstration board and HD image sensor, $1280{\times}720$ image size and 30 frames per second.

An Efficient Content-Based High-Dimensional Index Structure for Image Data

  • Lee, Jang-Sun;Yoo, Jae-Soo;Lee, Seok-Hee;Kim, Myung-Joon
    • ETRI Journal
    • /
    • 제22권2호
    • /
    • pp.32-42
    • /
    • 2000
  • The existing multi-dimensional index structures are not adequate for indexing higher-dimensional data sets. Although conceptually they can be extended to higher dimensionalities, they usually require time and space that grow exponentially with the dimensionality. In this paper, we analyze the existing index structures and derive some requirements of an index structure for content-based image retrieval. We also propose a new structure, for indexing large amount of point data in a high-dimensional space that satisfies the requirements. in order to justify the performance of the proposed structure, we compare the proposed structure with the existing index structures in various environments. We show, through experiments, that our proposed structure outperforms the existing structures in terms of retrieval time and storage overhead.

  • PDF