• 제목/요약/키워드: Image Forensics

검색결과 47건 처리시간 0.02초

Forensics Aided Steganalysis of Heterogeneous Bitmap Images with Different Compression History

  • Hou, Xiaodan;Zhang, Tao;Xiong, Gang;Wan, Baoji
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권8호
    • /
    • pp.1926-1945
    • /
    • 2012
  • In this paper, two practical forensics aided steganalyzers (FA-steganalyzer) for heterogeneous bitmap images are constructed, which can properly handle steganalysis problems for mixed image sources consisting of raw uncompressed images and JPEG decompressed images with different quality factors. The first FA-steganalyzer consists of a JPEG decompressed image identifier followed by two corresponding steganalyzers, one of which is used to deal with uncompressed images and the other is used for mixed JPEG decompressed images with different quality factors. In the second FA-steganalyzer scheme, we further estimate the quality factors for JPEG decompressed images, and then steganalyzers trained on the corresponding quality factors are used. Extensive experimental results show that the proposed two FA-steganalyzers outperform the existing steganalyzer that is trained on a mixed dataset. Additionally, in our proposed FA-steganalyzer scheme, we can select the steganalysis methods specially designed for raw uncompressed images and JPEG decompressed images respectively, which can achieve much more reliable detection accuracy than adopting the identical steganalysis method regardless of the type of cover source.

A Survey on Passive Image Copy-Move Forgery Detection

  • Zhang, Zhi;Wang, Chengyou;Zhou, Xiao
    • Journal of Information Processing Systems
    • /
    • 제14권1호
    • /
    • pp.6-31
    • /
    • 2018
  • With the rapid development of the science and technology, it has been becoming more and more convenient to obtain abundant information via the diverse multimedia medium. However, the contents of the multimedia are easily altered with different editing software, and the authenticity and the integrity of multimedia content are under threat. Forensics technology is developed to solve this problem. We focus on reviewing the blind image forensics technologies for copy-move forgery in this survey. Copy-move forgery is one of the most common manners to manipulate images that usually obscure the objects by flat regions or append the objects within the same image. In this paper, two classical models of copy-move forgery are reviewed, and two frameworks of copy-move forgery detection (CMFD) methods are summarized. Then, massive CMFD methods are mainly divided into two types to retrospect the development process of CMFD technologies, including block-based and keypoint-based. Besides, the performance evaluation criterions and the datasets created for evaluating the performance of CMFD methods are also collected in this review. At last, future research directions and conclusions are given to provide beneficial advice for researchers in this field.

Standard Model for Mobile Forensic Image Development

  • Sojung, Oh;Eunjin, Kim;Eunji, Lee;Yeongseong, Kim;Gibum, Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권2호
    • /
    • pp.626-643
    • /
    • 2023
  • As mobile forensics has emerged as an essential technique, the demand for technology development, education and training is increasing, wherein images are used. Academic societies in South Korea and national institutions in the US and the UK are leading the Mobile Forensic Image development. However, compared with disks, images developed in a mobile environment are few cases and have less active research, causing a waste of time, money, and manpower. Mobile Forensic Images are also difficult to trust owing to insufficient verification processes. Additionally, in South Korea, there are legal issues involving the Telecommunications Business Act and the Act on the Protection and Use of Location Information. Therefore, in this study, we requested a review of a standard model for the development of Mobile Forensic Image from experts and designed an 11-step development model. The steps of the model are as follows: a. setting of design directions, b. scenario design, c. selection of analysis techniques, d. review of legal issues, e. creation of virtual information, f. configuring system settings, g. performing imaging as per scenarios, h. Developing a checklist, i. internal verification, j. external verification, and k. confirmation of validity. Finally, we identified the differences between the mobile and disk environments and discussed the institutional efforts of South Korea. This study will also provide a guideline for the development of professional quality verification and proficiency tests as well as technology and talent-nurturing tools. We propose a method that can be used as a guide to secure pan-national trust in forensic examiners and tools. We expect this study to strengthen the mobile forensics capabilities of forensic examiners and researchers. This research will be used for the verification and evaluation of individuals and institutions, contributing to national security, eventually.

파일 카빙: 디지털 포렌식을 위한 JPEG 이미지 단편화 지점 감지 (File Carving: JPEG Image Fragmentation Point Detection for Digital Forensics)

  • 누리지드;박동주
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2012년도 한국컴퓨터종합학술대회논문집 Vol.39 No.1(C)
    • /
    • pp.245-247
    • /
    • 2012
  • We know that JPEG image format is one of the most popular image formats in the digital area and distribution of digital photographic drawing it is interested frequently in certain types of forensic investigation. In most case, corrupted images are shown gaudiness with the boundary of the corrupted parts. In the paper, we propose a technique to carve correct JPEG images using transformation method and the approach can be used for JPEG image file carving tool development.

Detection and Localization of Image Tampering using Deep Residual UNET with Stacked Dilated Convolution

  • Aminu, Ali Ahmad;Agwu, Nwojo Nnanna;Steve, Adeshina
    • International Journal of Computer Science & Network Security
    • /
    • 제21권9호
    • /
    • pp.203-211
    • /
    • 2021
  • Image tampering detection and localization have become an active area of research in the field of digital image forensics in recent times. This is due to the widespread of malicious image tampering. This study presents a new method for image tampering detection and localization that combines the advantages of dilated convolution, residual network, and UNET Architecture. Using the UNET architecture as a backbone, we built the proposed network from two kinds of residual units, one for the encoder path and the other for the decoder path. The residual units help to speed up the training process and facilitate information propagation between the lower layers and the higher layers which are often difficult to train. To capture global image tampering artifacts and reduce the computational burden of the proposed method, we enlarge the receptive field size of the convolutional kernels by adopting dilated convolutions in the residual units used in building the proposed network. In contrast to existing deep learning methods, having a large number of layers, many network parameters, and often difficult to train, the proposed method can achieve excellent performance with a fewer number of parameters and less computational cost. To test the performance of the proposed method, we evaluate its performance in the context of four benchmark image forensics datasets. Experimental results show that the proposed method outperforms existing methods and could be potentially used to enhance image tampering detection and localization.

Block and Fuzzy Techniques Based Forensic Tool for Detection and Classification of Image Forgery

  • Hashmi, Mohammad Farukh;Keskar, Avinash G.
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권4호
    • /
    • pp.1886-1898
    • /
    • 2015
  • In today’s era of advanced technological developments, the threats to the authenticity and integrity of digital images, in a nutshell, the threats to the Image Forensics Research communities have also increased proportionately. This happened as even for the ‘non-expert’ forgers, the availability of image processing tools has become a cakewalk. This image forgery poses a great problem for judicial authorities in any context of trade and commerce. Block matching based image cloning detection system is widely researched over the last 2-3 decades but this was discouraged by higher computational complexity and more time requirement at the algorithm level. Thus, for reducing time need, various dimension reduction techniques have been employed. Since a single technique cannot cope up with all the transformations like addition of noise, blurring, intensity variation, etc. we employ multiple techniques to a single image. In this paper, we have used Fuzzy logic approach for decision making and getting a global response of all the techniques, since their individual outputs depend on various parameters. Experimental results have given enthusiastic elicitations as regards various transformations to the digital image. Hence this paper proposes Fuzzy based cloning detection and classification system. Experimental results have shown that our detection system achieves classification accuracy of 94.12%. Detection accuracy (DAR) while in case of 81×81 sized copied portion the maximum accuracy achieved is 99.17% as regards subjection to transformations like Blurring, Intensity Variation and Gaussian Noise Addition.

Detection for Operation Chain: Histogram Equalization and Dither-like Operation

  • Chen, Zhipeng;Zhao, Yao;Ni, Rongrong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권9호
    • /
    • pp.3751-3770
    • /
    • 2015
  • Many sorts of image processing software facilitate image editing and also generate a great number of doctored images. Forensic technology emerges to detect the unintentional or malicious image operations. Most of forensic methods focus on the detection of single operations. However, a series of operations may be used to sequentially manipulate an image, which makes the operation detection problem complex. Forensic investigators always want to know as much exhaustive information about a suspicious image's entire processing history as possible. The detection of the operation chain, consisting of a series of operations, is a significant and challenging problem in the research field of forensics. In this paper, based on the histogram distribution uniformity of a manipulated image, we propose an operation chain detection scheme to identify histogram equalization (HE) followed by the dither-like operation (DLO). Two histogram features and a local spatial feature are utilized to further determine which DLO may have been applied. Both theoretical analysis and experimental results verify the effectiveness of our proposed scheme for both global and local scenarios.

A Method of License Plate Location and Character Recognition based on CNN

  • Fang, Wei;Yi, Weinan;Pang, Lin;Hou, Shuonan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권8호
    • /
    • pp.3488-3500
    • /
    • 2020
  • At the present time, the economy continues to flourish, and private cars have become the means of choice for most people. Therefore, the license plate recognition technology has become an indispensable part of intelligent transportation, with research and application value. In recent years, the convolution neural network for image classification is an application of deep learning on image processing. This paper proposes a strategy to improve the YOLO model by studying the deep learning convolutional neural network (CNN) and related target detection methods, and combines the OpenCV and TensorFlow frameworks to achieve efficient recognition of license plate characters. The experimental results show that target detection method based on YOLO is beneficial to shorten the training process and achieve a good level of accuracy.

스마트폰 내부 정보 추출 방법 (A Method of Internal Information Acquisition of Smartphones)

  • 이윤호;이상진
    • 정보보호학회논문지
    • /
    • 제23권6호
    • /
    • pp.1057-1067
    • /
    • 2013
  • 최근 모바일 시장에는 스마트폰의 점유율이 점차 높아지고 다양한 운영체제를 기반으로 하는 스마트 기기와 애플리케이션이 출시되고 있다. 이러한 현실에서 디지털 포렌식 조사에 있어서 스마트 기기 분석의 중요성이 많이 대두되고 있으며, 사용자 행위를 분석하기 위해 기기에서 사용자 데이터를 추출할 때 데이터의 훼손을 최소화하는 것이 가장 중요하다. 본 논문에서는 안드로이드 운영체제 및 iOS 기반 기기에 다양한 루트 권한 획득방법을 적용한 후 추출된 데이터 이미지를 대상으로 파일시스템 영역별 변경되는 부분을 비교 분석하고, 결과적으로 디지털 포렌식 관점에서 가장 효율적인 루트 권한 획득방법을 제안한다.

SIFT 기반 카피-무브 위조 검출에 대한 타켓 카운터-포렌식 기법 (A Targeted Counter-Forensics Method for SIFT-Based Copy-Move Forgery Detection)

  • ;이경현
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제3권5호
    • /
    • pp.163-172
    • /
    • 2014
  • Scale Invariant Feature Transform (SIFT)은 높은 매칭 능력과 회전이나 스케일 조정 시 안정성으로 인해 이미지 특징 매칭을 위해 많은 응용에서 사용되어지고 있으며, 이러한 특성으로 인해 카피-무브 위조 검출을 위한 핵심 알고리즘으로 각광받고 있다. 하지만 SIFT 변환은 이미지 조작의 증거를 감출 수 있는 안티포렌식의 가능성이 높음에도 불구하고 이에 대한 연구는 거의 없으므로, 본 논문에서는 의미론적으로 허용될 수 있는 왜곡을 적용하여 SIFT 기반 카피-무브 위조 검출을 방해하기 위한 타켓 카운터-포렌식 기법을 제안한다. 제안 기법은 공격자가 유사성 매칭 절차를 속일 수 있는 동시에 SIFT 키포인트의 변형을 통한 추적을 방해하여 이미지 조작의 증거를 숨길 수 있는 방안을 제공한다. 또한 제안 기법은 의미론적 제약 하에서 가공된 이미지와 원본 이미지 간의 높은 충실도를 유지하는 특성을 가진다. 한편, 다양한 조건의 테스트 이미지에 대한 실험을 통해 제안 기법의 효율성을 확인하였다.