KSII Transactions on Internet and Information Systems (TIIS)
/
제6권8호
/
pp.1926-1945
/
2012
In this paper, two practical forensics aided steganalyzers (FA-steganalyzer) for heterogeneous bitmap images are constructed, which can properly handle steganalysis problems for mixed image sources consisting of raw uncompressed images and JPEG decompressed images with different quality factors. The first FA-steganalyzer consists of a JPEG decompressed image identifier followed by two corresponding steganalyzers, one of which is used to deal with uncompressed images and the other is used for mixed JPEG decompressed images with different quality factors. In the second FA-steganalyzer scheme, we further estimate the quality factors for JPEG decompressed images, and then steganalyzers trained on the corresponding quality factors are used. Extensive experimental results show that the proposed two FA-steganalyzers outperform the existing steganalyzer that is trained on a mixed dataset. Additionally, in our proposed FA-steganalyzer scheme, we can select the steganalysis methods specially designed for raw uncompressed images and JPEG decompressed images respectively, which can achieve much more reliable detection accuracy than adopting the identical steganalysis method regardless of the type of cover source.
With the rapid development of the science and technology, it has been becoming more and more convenient to obtain abundant information via the diverse multimedia medium. However, the contents of the multimedia are easily altered with different editing software, and the authenticity and the integrity of multimedia content are under threat. Forensics technology is developed to solve this problem. We focus on reviewing the blind image forensics technologies for copy-move forgery in this survey. Copy-move forgery is one of the most common manners to manipulate images that usually obscure the objects by flat regions or append the objects within the same image. In this paper, two classical models of copy-move forgery are reviewed, and two frameworks of copy-move forgery detection (CMFD) methods are summarized. Then, massive CMFD methods are mainly divided into two types to retrospect the development process of CMFD technologies, including block-based and keypoint-based. Besides, the performance evaluation criterions and the datasets created for evaluating the performance of CMFD methods are also collected in this review. At last, future research directions and conclusions are given to provide beneficial advice for researchers in this field.
Sojung, Oh;Eunjin, Kim;Eunji, Lee;Yeongseong, Kim;Gibum, Kim
KSII Transactions on Internet and Information Systems (TIIS)
/
제17권2호
/
pp.626-643
/
2023
As mobile forensics has emerged as an essential technique, the demand for technology development, education and training is increasing, wherein images are used. Academic societies in South Korea and national institutions in the US and the UK are leading the Mobile Forensic Image development. However, compared with disks, images developed in a mobile environment are few cases and have less active research, causing a waste of time, money, and manpower. Mobile Forensic Images are also difficult to trust owing to insufficient verification processes. Additionally, in South Korea, there are legal issues involving the Telecommunications Business Act and the Act on the Protection and Use of Location Information. Therefore, in this study, we requested a review of a standard model for the development of Mobile Forensic Image from experts and designed an 11-step development model. The steps of the model are as follows: a. setting of design directions, b. scenario design, c. selection of analysis techniques, d. review of legal issues, e. creation of virtual information, f. configuring system settings, g. performing imaging as per scenarios, h. Developing a checklist, i. internal verification, j. external verification, and k. confirmation of validity. Finally, we identified the differences between the mobile and disk environments and discussed the institutional efforts of South Korea. This study will also provide a guideline for the development of professional quality verification and proficiency tests as well as technology and talent-nurturing tools. We propose a method that can be used as a guide to secure pan-national trust in forensic examiners and tools. We expect this study to strengthen the mobile forensics capabilities of forensic examiners and researchers. This research will be used for the verification and evaluation of individuals and institutions, contributing to national security, eventually.
We know that JPEG image format is one of the most popular image formats in the digital area and distribution of digital photographic drawing it is interested frequently in certain types of forensic investigation. In most case, corrupted images are shown gaudiness with the boundary of the corrupted parts. In the paper, we propose a technique to carve correct JPEG images using transformation method and the approach can be used for JPEG image file carving tool development.
Aminu, Ali Ahmad;Agwu, Nwojo Nnanna;Steve, Adeshina
International Journal of Computer Science & Network Security
/
제21권9호
/
pp.203-211
/
2021
Image tampering detection and localization have become an active area of research in the field of digital image forensics in recent times. This is due to the widespread of malicious image tampering. This study presents a new method for image tampering detection and localization that combines the advantages of dilated convolution, residual network, and UNET Architecture. Using the UNET architecture as a backbone, we built the proposed network from two kinds of residual units, one for the encoder path and the other for the decoder path. The residual units help to speed up the training process and facilitate information propagation between the lower layers and the higher layers which are often difficult to train. To capture global image tampering artifacts and reduce the computational burden of the proposed method, we enlarge the receptive field size of the convolutional kernels by adopting dilated convolutions in the residual units used in building the proposed network. In contrast to existing deep learning methods, having a large number of layers, many network parameters, and often difficult to train, the proposed method can achieve excellent performance with a fewer number of parameters and less computational cost. To test the performance of the proposed method, we evaluate its performance in the context of four benchmark image forensics datasets. Experimental results show that the proposed method outperforms existing methods and could be potentially used to enhance image tampering detection and localization.
In today’s era of advanced technological developments, the threats to the authenticity and integrity of digital images, in a nutshell, the threats to the Image Forensics Research communities have also increased proportionately. This happened as even for the ‘non-expert’ forgers, the availability of image processing tools has become a cakewalk. This image forgery poses a great problem for judicial authorities in any context of trade and commerce. Block matching based image cloning detection system is widely researched over the last 2-3 decades but this was discouraged by higher computational complexity and more time requirement at the algorithm level. Thus, for reducing time need, various dimension reduction techniques have been employed. Since a single technique cannot cope up with all the transformations like addition of noise, blurring, intensity variation, etc. we employ multiple techniques to a single image. In this paper, we have used Fuzzy logic approach for decision making and getting a global response of all the techniques, since their individual outputs depend on various parameters. Experimental results have given enthusiastic elicitations as regards various transformations to the digital image. Hence this paper proposes Fuzzy based cloning detection and classification system. Experimental results have shown that our detection system achieves classification accuracy of 94.12%. Detection accuracy (DAR) while in case of 81×81 sized copied portion the maximum accuracy achieved is 99.17% as regards subjection to transformations like Blurring, Intensity Variation and Gaussian Noise Addition.
KSII Transactions on Internet and Information Systems (TIIS)
/
제9권9호
/
pp.3751-3770
/
2015
Many sorts of image processing software facilitate image editing and also generate a great number of doctored images. Forensic technology emerges to detect the unintentional or malicious image operations. Most of forensic methods focus on the detection of single operations. However, a series of operations may be used to sequentially manipulate an image, which makes the operation detection problem complex. Forensic investigators always want to know as much exhaustive information about a suspicious image's entire processing history as possible. The detection of the operation chain, consisting of a series of operations, is a significant and challenging problem in the research field of forensics. In this paper, based on the histogram distribution uniformity of a manipulated image, we propose an operation chain detection scheme to identify histogram equalization (HE) followed by the dither-like operation (DLO). Two histogram features and a local spatial feature are utilized to further determine which DLO may have been applied. Both theoretical analysis and experimental results verify the effectiveness of our proposed scheme for both global and local scenarios.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권8호
/
pp.3488-3500
/
2020
At the present time, the economy continues to flourish, and private cars have become the means of choice for most people. Therefore, the license plate recognition technology has become an indispensable part of intelligent transportation, with research and application value. In recent years, the convolution neural network for image classification is an application of deep learning on image processing. This paper proposes a strategy to improve the YOLO model by studying the deep learning convolutional neural network (CNN) and related target detection methods, and combines the OpenCV and TensorFlow frameworks to achieve efficient recognition of license plate characters. The experimental results show that target detection method based on YOLO is beneficial to shorten the training process and achieve a good level of accuracy.
최근 모바일 시장에는 스마트폰의 점유율이 점차 높아지고 다양한 운영체제를 기반으로 하는 스마트 기기와 애플리케이션이 출시되고 있다. 이러한 현실에서 디지털 포렌식 조사에 있어서 스마트 기기 분석의 중요성이 많이 대두되고 있으며, 사용자 행위를 분석하기 위해 기기에서 사용자 데이터를 추출할 때 데이터의 훼손을 최소화하는 것이 가장 중요하다. 본 논문에서는 안드로이드 운영체제 및 iOS 기반 기기에 다양한 루트 권한 획득방법을 적용한 후 추출된 데이터 이미지를 대상으로 파일시스템 영역별 변경되는 부분을 비교 분석하고, 결과적으로 디지털 포렌식 관점에서 가장 효율적인 루트 권한 획득방법을 제안한다.
Scale Invariant Feature Transform (SIFT)은 높은 매칭 능력과 회전이나 스케일 조정 시 안정성으로 인해 이미지 특징 매칭을 위해 많은 응용에서 사용되어지고 있으며, 이러한 특성으로 인해 카피-무브 위조 검출을 위한 핵심 알고리즘으로 각광받고 있다. 하지만 SIFT 변환은 이미지 조작의 증거를 감출 수 있는 안티포렌식의 가능성이 높음에도 불구하고 이에 대한 연구는 거의 없으므로, 본 논문에서는 의미론적으로 허용될 수 있는 왜곡을 적용하여 SIFT 기반 카피-무브 위조 검출을 방해하기 위한 타켓 카운터-포렌식 기법을 제안한다. 제안 기법은 공격자가 유사성 매칭 절차를 속일 수 있는 동시에 SIFT 키포인트의 변형을 통한 추적을 방해하여 이미지 조작의 증거를 숨길 수 있는 방안을 제공한다. 또한 제안 기법은 의미론적 제약 하에서 가공된 이미지와 원본 이미지 간의 높은 충실도를 유지하는 특성을 가진다. 한편, 다양한 조건의 테스트 이미지에 대한 실험을 통해 제안 기법의 효율성을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.