• 제목/요약/키워드: Image Focal Plane

검색결과 111건 처리시간 0.026초

분무 액적 특성 계측을 위한 디지털 입자 홀로그래피 시스템의 개발 (Development of Digital Particle Holographic System for Measurements of the Characteristics of Spray Droplets)

  • ;강보선
    • 한국분무공학회지
    • /
    • 제15권2호
    • /
    • pp.53-60
    • /
    • 2010
  • This study presents development of digital particle holographic system and its application to spray field to measure three-dimensional velocities and sizes of spray droplets. A double exposure hologram recording system with synchronization system for time control was established and digital holograms can be recorded in a short time interval. To process recorded holograms, the correlation coefficient method was used for focal plane determination of particles. To remove noises and improve the quality of holograms and reconstructed images, the Wiener filter was adopted. The two-threshold and image segmentation methods were used in binary image transformation. For particle pairing, the match probability method was adopted. The developed system was applied to spray field and three-dimensional velocities and sizes of spray droplets were measured. The measurement results of digital holographic system were compared with those made by laser instruments, PDPA(Phase Doppler Particle Analyzer), which proved the feasibility of in-line digital particle holographic system as a good measurement tool for spray droplets.

$320{\times}256$ 초점면배열 적외선 검출기를 위한 고성능 저 전력 신호취득회로의 제작 (Fabrication of High Performance and Low Power Readout Integrated Circuit for $320{\times}256$ IRFPA)

  • 김치연
    • 한국군사과학기술학회지
    • /
    • 제10권2호
    • /
    • pp.152-159
    • /
    • 2007
  • This paper describes the design, fabrication, and measurement of ROIC(ReadOut Integrated Circuit) for $320{\times}256$ IRFPA(InfraRed Focal Plane Array). A ROIC plays an important role that transfer photocurrent generated in a detector device to thermal image system. Recently, the high performance and low power ROIC adding various functions is being required. According to this requirement, the design of ROIC focuses on 7MHz or more pixel rate, low power dissipation, anti-blooming, multi-channel output mode, image reversal, various windowing, and frame CDS(Correlated Double Sampling). The designed ROIC was fabricated using $0.6{\mu}m$ double-poly triple-metal Si CMOS process. ROIC function factors work normally, and the power dissipation of ROIC is 33mW and 90.5mW at 7.5MHz pixel rate in the 1-channel and 4-channel operation, respectively.

Image Registration for Cloudy KOMPSAT-2 Imagery Using Disparity Clustering

  • Kim, Tae-Young;Choi, Myung-Jin
    • 대한원격탐사학회지
    • /
    • 제25권3호
    • /
    • pp.287-294
    • /
    • 2009
  • KOMPSAT-2 like other high-resolution satellites has the time and angle difference in the acquisition of the panchromatic (PAN) and multispectral (MS) images because the imaging systems have the offset of the charge coupled device combination in the focal plane. Due to the differences, high altitude and moving objects, such as clouds, have a different position between the PAN and MS images. Therefore, a mis-registration between the PAN and MS images occurs when a registration algorithm extracted matching points from these cloud objects. To overcome this problem, we proposed a new registration method. The main idea is to discard the matching points extracted from cloud boundaries by using an automatic thresholding technique and a classification technique on a distance disparity map of the matching points. The experimental result demonstrates the accuracy of the proposed method at ground region around cloud objects is higher than a general method which does not consider cloud objects. To evaluate the proposed method, we use KOMPSAT-2 cloudy images.

이상적인 디스크형 3차원 홀로그래픽 메모리에서의 면적 저장밀도 (Area storage density of ideal 3-D holographic disk memories)

  • 장주석;신동학
    • 한국광학회지
    • /
    • 제11권1호
    • /
    • pp.58-64
    • /
    • 2000
  • 홀로그램 기록 매질의 성능이 이상적이라 가정할 때, 각다중이나 회전다중 또는 그 두 가지를 모두 사용하는 경우에 있어서, 디스크형 홀로그래픽 메모리에서의 면적 저장 밀도를 산출하여 비교하였다. 이때 면적 저장 밀도는 신호빔에 사용되는 Fourier 변환 렌즈의 f 수(초점거리/직경, $F/#_2$)와 각다중을 위한 기준빔의 입사각 범위(또는 이 각 범위에 대응하는 등가적인 f수, $F/#_1$)에 크게 의존된다. Fourier 면 홀로그램을 기록할 경우, 면적 저장밀도는 공간 광 변조기의 픽셀 크기에는 큰 영향을 받지 않지만, 영상면 홀로그램을 기록할 경우, 이 픽셀 크기에 직접적으로 영향을 받는다. 일반적으로 높은 면적 저장 밀도는 얻기 위해서는 영상면보다 Fourier 면(또는, 적어도 Fourier면 근처)에서 홀로그램을 기록하는 것이 유리하다. 또 저장 매질의 두께가 대략 $500\mu\ extrm{m}$이하일 때에는 각다중보다 회전다중 방식이 더 높은 면적 저장 밀도를 주었다. 그러나, 저장매질의 두께와 관계없이 면적 저장밀도를 더욱 높이기 위해서는, 각다중과 회전다중 방식을 복합적으로 사용할 필요가 있음을 알 수 있었다.

  • PDF

초음파 홀로그램의 구성과 컴퓨터 영상재현 (The Construction of Ultrasonic Hologram and the Image Reconstruction Using Computer)

  • 장성환;고대식;전계석
    • 한국음향학회지
    • /
    • 제8권4호
    • /
    • pp.23-28
    • /
    • 1989
  • 본 논문에서는 컴퓨터에 의한 초음파 홀로그램의 구성과 영상 재생방법을 연구하였으며 이를 광학적 재생방법과 비교 분석하였다. 초음파 홀로그램은 초음파 변환자를 기계적으로 c-scan $(128\times128 step)$하여 구성하였고 물체에 대한 영상은 Rayleigh-Sommerfeld 식과 DFT 알고리즘을 이용하여 컴퓨터 재생하였다. 본 실험에서 는 중심주파수가 5MHz이고 촛점 거리가 5cm 인 초음파 변환자와 기계적인 c-scanning 시스템을 사용하여 음향 홀로그래피 시스템을 구성하였고 알루미늄 판에 S자 형태를 새긴 샘플을 제작하여 실험하였다. 실험결과 컴퓨터에 의해 재생된 영상은 실체와 동일한 고질의 영상임을 확인하였다.

  • PDF

Improved 3D Resolution Analysis of N-Ocular Imaging Systems with the Defocusing Effect of an Imaging Lens

  • Lee, Min-Chul;Inoue, Kotaro;Cho, Myungjin
    • Journal of information and communication convergence engineering
    • /
    • 제13권4호
    • /
    • pp.270-274
    • /
    • 2015
  • In this paper, we propose an improved framework to analyze an N-ocular imaging system under fixed constrained resources such as the number of image sensors, the pixel size of image sensors, the distance between adjacent image sensors, the focal length of image sensors, and field of view of image sensors. This proposed framework takes into consideration, for the first time, the defocusing effect of the imaging lenses according to the object distance. Based on the proposed framework, the N-ocular imaging system such as integral imaging is analyzed in terms of depth resolution using two-point-source resolution analysis. By taking into consideration the defocusing effect of the imaging lenses using ray projection model, it is shown that an improved depth resolution can be obtained near the central depth plane as the number of cameras increases. To validate the proposed framework, Monte Carlo simulations are carried out and the results are analyzed.

A Wide Dynamic Range NUC Algorithm for IRCS Systems

  • Cai, Li-Hua;He, Feng-Yun;Chang, Song-Tao;Li, Zhou
    • Journal of the Korean Physical Society
    • /
    • 제73권12호
    • /
    • pp.1821-1826
    • /
    • 2018
  • Uniformity is a key feature of state-of-the-art infrared focal planed array (IRFPA) and infrared imaging system. Unlike traditional infrared telescope facility, a ground-based infrared radiant characteristics measurement system with an IRFPA not only provides a series of high signal-to-noise ratio (SNR) infrared image but also ensures the validity of radiant measurement data. Normally, a long integration time tends to produce a high SNR infrared image for infrared radiant characteristics radiometry system. In view of the variability of and uncertainty in the measured target's energy, the operation of switching the integration time and attenuators usually guarantees the guality of the infrared radiation measurement data obtainted during the infrared radiant characteristics radiometry process. Non-uniformity correction (NUC) coefficients in a given integration time are often applied to a specified integration time. If the integration time is switched, the SNR for the infrared imaging will degenerate rapidly. Considering the effect of the SNR for the infrared image and the infrared radiant characteristics radiometry above, we propose a-wide-dynamic-range NUC algorithm. In addition, this essasy derives and establishes the mathematical modal of the algorithm in detail. Then, we conduct verification experiments by using a ground-based MWIR(Mid-wave Infared) radiant characteristics radiometry system with an Ø400 mm aperture. The experimental results obtained using the proposed algorithm and the traditional algorithm for different integration time are compared. The statistical data shows that the average non-uniformity for the proposed algorithm decreased from 0.77% to 0.21% at 2.5 ms and from 1.33% to 0.26% at 5.5 ms. The testing results demonstrate that the usage of suggested algorithm can improve infrared imaging quality and radiation measurement accuracy.

소형 화기용 TEC-less 열상 처리 기법 (TEC-less Thermal Image Processing Method for Small Arms)

  • 곽동민;윤주홍;양동원;이용헌;서용석
    • 한국군사과학기술학회지
    • /
    • 제22권2호
    • /
    • pp.162-169
    • /
    • 2019
  • This paper describes a thermal image processing algorithm for uncooled type TEC-less IR detector which is applicable to fire control system of small arms. We implemented a real-time gain and offset compensation algorithm based on polynomial approximation from the raw dataset which is acquired by two reference temperature of blackbody from various FPA(Focal Plane Array) temperature. Through the experiment, we analyzed the output characteristics of detector's raw-data and compared IR image quality to traditional non-uniformity correction method. It shows that the proposed method works well in all FPA temperature range with low residual non-uniformity.

Stereo cameras calibration bases on Epipolar Rectification and its Application

  • Chaewieang, Pipat;Thepmanee, Teerawat;Kummool, Sart;Jaruvanawat, Anuchit;Sirisantisamrid, Kaset
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.246-249
    • /
    • 2003
  • The constraints necessary guarantee using the comparison of these extrinsic parameters, which each Rotation matrix and Translation Vector must be equal to the either, except the X-axis Translation Vector. Thus, we can not yet calculate the 3D-range measurement in the end of camera calibration. To minimize this disadvantage, the Epipolar Rectification has been proposed in the literature. This paper aims to present the development of Epipolar Rectification to calibrate Stereo cameras. The required computation of the transformation mapping between points in 3D-space is based on calculating the image point that appears on new image plane by using calibrated parameters. This computation is assumed from the rotating the old ones around their optical center until focal planes becomes coplanar, thereby containing the baseline, and the Z-axis of both camera coordinate to be parallel together. The optical center positions of the new extrinsic parameters are the same as the old camera, whereas the new orientation differs from the old ones by the suitable rotations. The intrinsic parameters are the same for both cameras. So that, after completed calibration process, immediately can calculate the 3D-range measurement. And the rectification determines a transformation of each image plane such that pairs of conjugate Epipolar lines become collinear and parallel to one of the image axis. From the experimental results verify the proposed technique are agreed with the expected specifications.

  • PDF

RGB 레이저 가시화를 위한 축대칭 구면 f-${\theta}$ 렌즈 설계 및 프로젝션응용 (A Study of f-${\theta}$ Lens Design for Axisymmetric Spherical Surface for RGB Laser Display and its applications)

  • 이영민;최해운
    • 한국레이저가공학회지
    • /
    • 제14권2호
    • /
    • pp.24-29
    • /
    • 2011
  • The design of a telecentric f-${\theta}$ lens with a field of view (FOV) $30^{\circ}$ and an effective focal length of 1000mm is presented. The optical stop is placed at the front plane and the design is based on a geometric ray tracing technique, and the designed system consists of a series of convex and concave lenses. The designed f-${\theta}$ lens showed a considerable reduction in weight with a simplified structure and resulted in a good performance in the designated FOV. Detail analysis of rays is also presented. 653nm (red laser), 586nm (green laser), and 468nm (blue laser) were simulated as a light source and image illuminating source. The developed optical design requires 7 pieces of lenses made of SF1, N-FK56, N-LAK33, and BK7 glass materials. With optimal parametric design, the effective focal length was calculated to be 974.839mm which is very close to the initial design target. For the manufacturing purpose, the dimensions of lens curvature and thickness were truncated with error ranging 0.1% to 3.2%. As a result, the overall error was calculated to be 3.2% which can be still tolerable for display, laser material, and machining processing.

  • PDF