• Title/Summary/Keyword: Image Edge

Search Result 2,464, Processing Time 0.031 seconds

3-D characteristics of conical vortex around large-span flat roof by PIV technique

  • Sun, Huyue;Ye, Jihong
    • Wind and Structures
    • /
    • v.22 no.6
    • /
    • pp.663-684
    • /
    • 2016
  • Conical vortices generated at the corner regions of large-span flat roofs have been investigated by using the Particle Image Velocimetry (PIV) technique. Mean and instantaneous vector fields for velocity, vorticity, and streamlines were measured at three visual planes and for two different flow angles of $15^{\circ}$. The results indicated that conical vortices occur when the wind is not perpendicular to the front edge. The location of the leading edge corresponding to the negative peak vorticity and maximum turbulent kinetic energy was found at the center of the conical vortex. The wind pressure reaches the maximum near the leading edge roof corner, and a triangle of severe suctions zone appears downstream. The mean pressure in uniform flow is greater than that under turbulent flow condition, while a significant increase in the fluctuating wind pressure occurs in turbulent streams. From its emergence to stability, the shape of the vortex cross-section is nearly elliptical, with increasing area. The angle that forms between the vortex axis and the leading edge is much smaller in turbulent streams. The detailed flow structures and characteristics obtained through FLUENT simulation are in agreement with the experimental results. The three dimensional (3-D) structure of the conical vortices is clearly observed from the comprehensive arrangement of several visual planes, and the inner link was established between the vortex evolution process, vortex core position and pressure distribution.

A Study of Improving LDP Code Using Edge Directional Information (에지 방향 정보를 이용한 LDP 코드 개선에 관한 연구)

  • Lee, Tae Hwan;Cho, Young Tak;Ahn, Yong Hak;Chae, Ok Sam
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.7
    • /
    • pp.86-92
    • /
    • 2015
  • This study proposes new LDP code to improve facial expression recognition rate by including local directional number(LDN), edge magnitudes and differences of neighborhood edge intensity. LDP is less sensitive on the change of intensity and stronger about noise than LBP. But LDP is difficult to express the smooth area without changing of intensity and if background image has the similar pattern with a face, the facial expression recognition rate of LDP is low. Therefore, we make the LDP code has the local directional number and the edge strength and experiment the facial expression recognition rate of changed LDP code.

A Fine Dust Measurement Technique using K-means and Sobel-mask Edge Detection Method (K-means와 Sobel-mask 윤곽선 검출 기법을 이용한 미세먼지 측정 방법)

  • Lee, Won-Hyeung;Seo, Ju-Wan;Kim, Ki-Yeon;Lin, Chi-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.2
    • /
    • pp.97-101
    • /
    • 2022
  • In this paper, we propose a method of measuring Fine dust in images using K-means and Sobel-mask based edge detection techniques using CCTV. The proposed algorithm collects images using a CCTV camera and designates an image range through a region of interest. When clustering is completed by applying the K-means algorithm, outline is detected through Sobel-mask, edge strength is measured, and the concentration of fine dust is determined based on the measured data. The proposed method extracts the contour of the mountain range using the characteristics of Sobel-mask, which has an advantage in diagonal measurement, and shows the difference in detection according to the concentration of fine dust as an experimental result.

Improvement of Edge Detection Using Mean Shift Algorithm (Mean Shift 알고리즘을 활용한 경계선 검출의 향상)

  • Shin, Seong-Yoon;Lee, Chang-Woo;Rhee, Yang-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.6
    • /
    • pp.59-64
    • /
    • 2009
  • Edge detection always influenced by the noise of original image, therefore need some methods to eliminate them in advance, and the Mean Shift algorithm has the smooth function which suit for this purpose, so adopt it to fade out the unimportant information and the sensitive noise portions. Above all, we use the Canny algorithm to pick up the contour of the objects we focus on. And, take tests and get better result than the former sole Canny algorithm. This combination method of Mean Shift algorithm and Canny algorithm is suitable for the edge detection processing.

Hepatic Vessel Segmentation using Edge Detection (Edge Detection을 이용한 간 혈관 추출)

  • Seo, Jeong-Joo;Park, Jong-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.3
    • /
    • pp.51-57
    • /
    • 2012
  • Hepatic vessel tree is the key structure for hepatic disease diagnosis and liver surgery planning. Especially, it is used to evaluate the donors' and recipients' liver for the LDLT(Living Donors Liver Transplantation) and estimate the volumes of left and right hepatic lobes for securing their life in the LDLT. In this study, we propose a method to apply canny edge detection that is not affected by noise to the liver images for automatic segmentation of hepatic vessels tree in contrast abdominal MDCT image. Using histograms and average pixel values of the various liver CT images, optimized parameters of the Canny algorithm are determined. It is more time-efficient to use the common parameters than to change parameters manually according to CT images. Candidates of hepatic vessels are extracted by threshold filtering around the detected the vessel edge. Finally, using a system which detects the true-negatives and the false-positives in horizontal and vertical direction, the true-negatives are added in candidate of hepatic vessels and the false-positives are removed. As a result of the process, the various hepatic vessel trees of patients are accurately reconstructed in 3D.

3D Fusion Imaging based on Spectral Computed Tomography Using K-edge Images (K-각 영상을 이용한 스펙트럼 전산화단층촬영 기반 3차원 융합진단영상화에 관한 연구)

  • Kim, Burnyoung;Lee, Seungwan;Yim, Dobin
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.4
    • /
    • pp.523-530
    • /
    • 2019
  • The purpose of this study was to obtain the K-edge images using a spectral CT system based on a photon-counting detector and implement the 3D fusion imaging using the conventional and spectral CT images. Also, we evaluated the clinical feasibility of the 3D fusion images though the quantitative analysis of image quality. A spectral CT system based on a CdTe photon-counting detector was used to obtain K-edge images. A pork phantom was manufactured with the six tubes including diluted iodine and gadolinium solutions. The K-edge images were obtained by the low-energy thresholds of 35 and 52 keV for iodine and gadolinium imaging with the X-ray spectrum, which was generated at a tube voltage of 100 kVp with a tube current of $500{\mu}A$. We implemented 3D fusion imaging by combining the iodine and gadolinium K-edge images with the conventional CT images. The results showed that the CNRs of the 3D fusion images were 6.76-14.9 times higher than those of the conventional CT images. Also, the 3D fusion images was able to provide the maps of target materials. Therefore, the technique proposed in this study can improve the quality of CT images and the diagnostic efficiency through the additional information of target materials.

Block-based Color Image Segmentation Using Y/C Bit-Plane Sum]nation Image (Y/C 비트 평면합 영상을 이용한 블록 기반 칼라 영상 분할)

  • Kwak, No-Yoon
    • Journal of Digital Contents Society
    • /
    • v.1 no.1
    • /
    • pp.53-64
    • /
    • 2000
  • This paper is related to color image segmentation scheme which makes it possible to achieve the excellent segmented results by block-based segmentation using Y/C bit-plane summation image. First, normalized chrominance summation image is obtained by normalizing the image which is summed up the absolutes of color-differential values between R, G, B images. Secondly, upper 2 bits of the luminance image and upper 6bits of and the normalized chrominance summation image are bitwise operated by the pixel to generate the Y/C bit-plane summation image. Next, the Y/C bit-plane summation image divided into predetermined block size, is classified into monotone blocks, texture blocks and edge blocks, and then each classified block is merged to the regions including one more blocks in the individual block type, and each region is selectively allocated to unique marker according to predetermined marker allocation rules. Finally, fine segmented results are obtained by applying the watershed algorithm to each pixel in the unmarked blocks. As shown in computer simulation, the main advantage of the proposed method is that it suppresses the over-segmentation in the texture regions and reduces computational load. Furthermore, it is able to apply global parameters to various images with different pixel distribution properties because they are nonsensitive for pixel distribution. Especially, the proposed method offers reasonable segmentation results in edge areas with lower contrast owing to the regional characteristics of the color components reflected in the Y/C bit-plane summation image.

  • PDF

Impact of Photon-Counting Detector Computed Tomography on Image Quality and Radiation Dose in Patients With Multiple Myeloma

  • Alexander Rau;Jakob Neubauer;Laetitia Taleb;Thomas Stein;Till Schuermann;Stephan Rau;Sebastian Faby;Sina Wenger;Monika Engelhardt;Fabian Bamberg;Jakob Weiss
    • Korean Journal of Radiology
    • /
    • v.24 no.10
    • /
    • pp.1006-1016
    • /
    • 2023
  • Objective: Computed tomography (CT) is an established method for the diagnosis, staging, and treatment of multiple myeloma. Here, we investigated the potential of photon-counting detector computed tomography (PCD-CT) in terms of image quality, diagnostic confidence, and radiation dose compared with energy-integrating detector CT (EID-CT). Materials and Methods: In this prospective study, patients with known multiple myeloma underwent clinically indicated whole-body PCD-CT. The image quality of PCD-CT was assessed qualitatively by three independent radiologists for overall image quality, edge sharpness, image noise, lesion conspicuity, and diagnostic confidence using a 5-point Likert scale (5 = excellent), and quantitatively for signal homogeneity using the coefficient of variation (CV) of Hounsfield Units (HU) values and modulation transfer function (MTF) via the full width at half maximum (FWHM) in the frequency space. The results were compared with those of the current clinical standard EID-CT protocols as controls. Additionally, the radiation dose (CTDIvol) was determined. Results: We enrolled 35 patients with multiple myeloma (mean age 69.8 ± 9.1 years; 18 [51%] males). Qualitative image analysis revealed superior scores (median [interquartile range]) for PCD-CT regarding overall image quality (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]), edge sharpness (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]), image noise (4.0 [4.0-4.0] vs. 3.0 [3.0-4.0]), lesion conspicuity (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]), and diagnostic confidence (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]) compared with EID-CT (P ≤ 0.004). In quantitative image analyses, PCD-CT compared with EID-CT revealed a substantially lower FWHM (2.89 vs. 25.68 cy/pixel) and a significantly more homogeneous signal (mean CV ± standard deviation [SD], 0.99 ± 0.65 vs. 1.66 ± 0.5; P < 0.001) at a significantly lower radiation dose (mean CTDIvol ± SD, 3.33 ± 0.82 vs. 7.19 ± 3.57 mGy; P < 0.001). Conclusion: Whole-body PCD-CT provides significantly higher subjective and objective image quality at significantly reduced radiation doses than the current clinical standard EID-CT protocols, along with readily available multi-spectral data, facilitating the potential for further advanced post-processing.

A Deblurring Algorithm Combined with Edge Directional Color Demosaicing for Reducing Interpolation Artifacts (컬러 보간 에러 감소를 위한 에지 방향성 컬러 보간 방법과 결합된 디블러링 알고리즘)

  • Yoo, Du Sic;Song, Ki Sun;Kang, Moon Gi
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.205-215
    • /
    • 2013
  • In digital imaging system, Bayer pattern is widely used and the observed image is degraded by optical blur during image acquisition process. Generally, demosaicing and deblurring process are separately performed in order to convert a blurred Bayer image to a high resolution color image. However, the demosaicing process often generates visible artifacts such as zipper effect and Moire artifacts when performing interpolation across edge direction in Bayer pattern image. These artifacts are emphasized by the deblurring process. In order to solve this problem, this paper proposes a deblurring algorithm combined with edge directional color demosaicing method. The proposed method is consisted of interpolation step and region classification step. Interpolation and deblurring are simultaneously performed according to horizontal and vertical directions, respectively during the interpolation step. In the region classification step, characteristics of local regions are determined at each pixel position and the directionally obtained values are region adaptively fused. Also, the proposed method uses blur model based on wave optics and deblurring filter is calculated by using estimated characteristics of local regions. The simulation results show that the proposed deblurring algorithm prevents the boosting of artifacts and outperforms conventional approaches in both objective and subjective terms.

A Study on Mapping 3-D River Boundary Using the Spatial Information Datasets (공간정보를 이용한 3차원 하천 경계선 매핑에 관한 연구)

  • Choung, Yun-Jae;Park, Hyen-Cheol;Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.1
    • /
    • pp.87-98
    • /
    • 2012
  • A river boundary is defined as the intersection between a main stream of a river and the land. Mapping of the river boundary is important for the protection of the properties in river areas, the prevention of flooding and the monitoring of the topographic changes in river areas. However, the utilization of the ground surveying technologies is not efficient for the mapping of the river boundary due to the irregular surfaces of river zones and the dynamic changes of water level of a river stream. Recently, the spatial information data sets such as the airborne LiDAR and aerial images are widely used for coastal mapping due to the acquisition of the topographic information without human accessibility. Due to these advantages, this research proposes a semi-automatic method for mapping of the river boundary using the spatial information data set such as the airborne LiDAR and the aerial photographs. Multiple image processing technologies such as the image segmentation algorithm and the edge detection algorithm are applied for the generation of the 3D river boundary using the aerial photographs and airborne topographic LiDAR data. Check points determined by the experienced expert are used for the measurement of the horizontal and vertical accuracy of the generated 3D river boundary. Statistical results show that the generated river boundary has a high accuracy in horizontal and vertical direction.