• Title/Summary/Keyword: Image Edge

Search Result 2,465, Processing Time 0.027 seconds

Implementation of Object Feature Extraction within Image for Object Tracking (객체 추적을 위한 영상 내의 객체 특징점 추출 알고리즘 구현)

  • Lee, Yong-Hwan;Kim, Youngseop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.3
    • /
    • pp.113-116
    • /
    • 2018
  • This paper proposes a mobile image search system which uses a sensor information of smart phone, and enables running in a variety of environments, which is implemented on Android platform. The implemented system deals with a new image descriptor using combination of the visual feature (CEDD) with EXIF attributes in the target of JPEG image, and image matching scheme, which is optimized to the mobile platform. Experimental result shows that the proposed method exhibited a significant improved searching results of around 80% in precision in the large image database. Considering the performance such as processing time and precision, we think that the proposed method can be used in other application field.

PATN: Polarized Attention based Transformer Network for Multi-focus image fusion

  • Pan Wu;Zhen Hua;Jinjiang Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.4
    • /
    • pp.1234-1257
    • /
    • 2023
  • In this paper, we propose a framework for multi-focus image fusion called PATN. In our approach, by aggregating deep features extracted based on the U-type Transformer mechanism and shallow features extracted using the PSA module, we make PATN feed both long-range image texture information and focus on local detail information of the image. Meanwhile, the edge-preserving information value of the fused image is enhanced using a dense residual block containing the Sobel gradient operator, and three loss functions are introduced to retain more source image texture information. PATN is compared with 17 more advanced MFIF methods on three datasets to verify the effectiveness and robustness of PATN.

2D/3D image Conversion Method using Simplification of Level and Reduction of Noise for Optical Flow and Information of Edge (Optical flow의 레벨 간소화 및 노이즈 제거와 에지 정보를 이용한 2D/3D 변환 기법)

  • Han, Hyeon-Ho;Lee, Gang-Seong;Lee, Sang-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.2
    • /
    • pp.827-833
    • /
    • 2012
  • In this paper, we propose an improved optical flow algorithm which reduces computational complexity as well as noise level. This algorithm reduces computational time by applying level simplification technique and removes noise by using eigenvectors of objects. Optical flow is one of the accurate algorithms used to generate depth information from two image frames using the vectors which track the motions of pixels. This technique, however, has disadvantage of taking very long computational time because of the pixel-based calculation and can cause some noise problems. The level simplifying technique is applied to reduce the computational time, and the noise is removed by applying optical flow only to the area of having eigenvector, then using the edge image to generate the depth information of background area. Three-dimensional images were created from two-dimensional images using the proposed method which generates the depth information first and then converts into three-dimensional image using the depth information and DIBR(Depth Image Based Rendering) technique. The error rate was obtained using the SSIM(Structural SIMilarity index).

Uniform Motion Deblurring using Shock Filter and Convolutional Neural Network (쇼크 필터와 합성곱 신경망 기반의 균일 모션 디블러링 기법)

  • Jeong, Minso;Jeong, Jechang
    • Journal of Broadcast Engineering
    • /
    • v.23 no.4
    • /
    • pp.484-494
    • /
    • 2018
  • The uniform motion blur removing algorithm of Cho et al. has the problem that the edge region of the image cannot be restored clearly. We propose the effective algorithm to overcome this problem by using shock filter that reconstructs a blurred step signal into a sharp edge, and convolutional neural network (CNN) that learns by extracting features from the image. Then uniform motion blur kernel is estimated from the latent sharp image to remove blur in the image. The proposed algorithm improved the disadvantages of the conventional algorithm by reconstructing the latent sharp image using shock filter and CNN. Through the experimental results, it was confirmed that the proposed algorithm shows excellent reconstruction performance in objective and subjective image quality than the conventional algorithm.

Stop Object Method within Intersection with Using Adaptive Background Image (적응적 배경영상을 이용한 교차로 내 정지 객체 검출 방법)

  • Kang, Sung-Jun;Sur, Am-Seog;Jeong, Sung-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2430-2436
    • /
    • 2013
  • This study suggests a method of detecting the still object, which becomes a cause of danger within the crossroad. The Inverse Perspective Transform was performed in order to make the object size consistent by being inputted the real-time image from CCTV that is installed within the crossroad. It established the detection area in the image with the perspective transform and generated the adaptative background image with the use of the moving information on object. The detection of the stop object was detected the candidate region of the stop object by using the background-image differential method. To grasp the appearance of truth on the detected candidate region, a method is proposed that uses the gradient information on image and EHD(Edge Histogram Descriptor). To examine performance of the suggested algorithm, it experimented by storing the images in the commuting time and the daytime through DVR, which is installed on the cross street. As a result of experiment, it could efficiently detect the stop vehicle within the detection region inside the crossroad. The processing speed is shown in 13~18 frame per second according to the area of the detection region, thereby being judged to likely have no problem about the real-time processing.

Vehicle License Plate Recognition System By Edge-based Segment Image Generation (에지기반 세그먼트 영상 생성에 의한 차량 번호판 인식 시스템)

  • Kim, Jin-Ho;Noh, Duck-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.3
    • /
    • pp.9-16
    • /
    • 2012
  • The research of vehicle license plate recognition has been widely studied for the smart city project. The license plate recognition can be hard due to the geometric distortion and the image quality degradation in case of capturing the driving car image at CCTV without trigger signal on the road. In this paper, the high performance vehicle license plate recognition system using edge-based segment image is introduced which is robust in the geometric distortion and the image quality degradation according to non-trigger signal. The experimental results of the proposed real time license plate recognition algorithm which is implemented at the CCTV on the road show that the plate detection rate was 97.5% and the overall character recognition rate of the detected plates was 99.3% in a day average 1,535 vehicles for a week operation.

A Technique for Image Processing of Concrete Surface Cracks (콘크리트 표면 균열의 영상 처리 기법)

  • Kim Kwang-Baek;Cho Jae-Hyun;Ahn Sang-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.7
    • /
    • pp.1575-1581
    • /
    • 2005
  • Recently, further study is being done on the affect of crack on concrete structure and many people have made every endeavor not to leave it unsettled but to minimize it by repair works. In this paper we propose the image processing method that do not remain manual but automatically process the length, the direction and e width of cracks on concrete surface. First, we calibrate light's affect from image by using closing operation, one of morphology methods that can extract the feature of oracle and we extract the edge of crack image by sobel mask. After it, crack image is binarized by iteration binarization. And we extract the edge of cracks using noise elimination method that use an average of adjacent pixels by 3${\times}$3 mask and Glassfire Labeling algorithm. on, in this paper we propose an image processing method which can automatically measure the length, the direction and the width of cracks using the extracted edges of cracks. The results of experiment showed that the proposed method works better on the extraction of concrete cracks. Also our method showed the possibility that inspector's decision is unnecessary.

A Motion Detection Approach based on UAV Image Sequence

  • Cui, Hong-Xia;Wang, Ya-Qi;Zhang, FangFei;Li, TingTing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.3
    • /
    • pp.1224-1242
    • /
    • 2018
  • Aiming at motion analysis and compensation, it is essential to conduct motion detection with images. However, motion detection and tracking from low-altitude images obtained from an unmanned aerial system may pose many challenges due to degraded image quality caused by platform motion, image instability and illumination fluctuation. This research tackles these challenges by proposing a modified joint transform correlation algorithm which includes two preprocessing strategies. In spatial domain, a modified fuzzy edge detection method is proposed for preprocessing the input images. In frequency domain, to eliminate the disturbance of self-correlation items, the cross-correlation items are extracted from joint power spectrum output plane. The effectiveness and accuracy of the algorithm has been tested and evaluated by both simulation and real datasets in this research. The simulation experiments show that the proposed approach can derive satisfactory peaks of cross-correlation and achieve detection accuracy of displacement vectors with no more than 0.03pixel for image pairs with displacement smaller than 20pixels, when addition of image motion blurring in the range of 0~10pixel and 0.002variance of additive Gaussian noise. Moreover,this paper proposes quantitative analysis approach using tri-image pairs from real datasets and the experimental results show that detection accuracy can be achieved with sub-pixel level even if the sampling frequency can only attain 50 frames per second.

Image Coding Using Bit-Planes of Wavelet Coefficients (웨이블렛 변환 계수의 비트 플레인을 이용한 영상부호화)

  • 김영로;홍원기;고성제
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.4
    • /
    • pp.714-725
    • /
    • 1997
  • This paper proposes an image compression method using the wavelet transform and bit-plane coding of wavelet coefficients. The hierarchical application of wavelet transform to an image produces one low resoluation(the subband with lowest frequency) image and several high frequency subbands. In the proposed method, the low resolution image is compressed by a lossless method at 8 bits per each coefficient. However, the high frequency subbands are decomposed into 8 bit planes. With an adptive block coding method, the decomposed bit planes are effectively compressed using localized edge information in each bit plane. In addition, the propsoed method can control bit rates by selectively eliminating lessimportant subbands of low significant bit planes. Experimental results show that the proposed scheme has better performance in the peak signal to noise ratio (PSNR) and compression rate than conventional image coding methods using the wavelet transform and vector quantization.

  • PDF

Head Pose Estimation with Accumulated Historgram and Random Forest (누적 히스토그램과 랜덤 포레스트를 이용한 머리방향 추정)

  • Mun, Sung Hee;Lee, Chil woo
    • Smart Media Journal
    • /
    • v.5 no.1
    • /
    • pp.38-43
    • /
    • 2016
  • As smart environment is spread out in our living environments, the needs of an approach related to Human Computer Interaction(HCI) is increases. One of them is head pose estimation. it related to gaze direction estimation, since head has a close relationship to eyes by the body structure. It's a key factor in identifying person's intention or the target of interest, hence it is an essential research in HCI. In this paper, we propose an approach for head pose estimation with pre-defined several directions by random forest classifier. We use canny edge detector to extract feature of the different facial image which is obtained between input image and averaged frontal facial image for extraction of rotation information of input image. From that, we obtain the binary edge image, and make two accumulated histograms which are obtained by counting the number of pixel which has non-zero value along each of the axes. This two accumulated histograms are used to feature of the facial image. We use CAS-PEAL-R1 Dataset for training and testing to random forest classifier, and obtained 80.6% accuracy.