• Title/Summary/Keyword: Image Edge

Search Result 2,472, Processing Time 0.027 seconds

A Multi Resolution Based Guided Filter Using Fuzzy Logic for X-Ray Medical Images (방사선 의료영상 잡음제거를 위한 퍼지논리 활용 다해상도 기반 유도필터)

  • Ko, Seung-Hyun;Pant, Suresh Raj;Lee, Joonwhoan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.4
    • /
    • pp.372-378
    • /
    • 2014
  • Noise in biomedical X-ray image degrades the quality so that it might causes to decrease the accuracy of diagnosis. Especially the noise reduction techniques is quite essential for low-dose biomedical X-ray images obtained from low radiation power in order to protect patients, because their noise level is usually high to well discriminate objects. This paper proposes an efficient method to remove the noise in low-dose X-ray images while preserving the edges with diverse resolutions. In the proposed method, a noisy image is at first decomposed into several images with different resolutions in pyramidal representation, then the stable map of edge confidence is obtained from each of analyzed image using a fuzzy logic-based edge detector. This map is used to adaptively determine the parameter for guided filters, which eliminate the noise while preserving edges in the corresponding image. The filtered images in the pyramid are extended and synthesized into a resulted image using interpolation technique. The superiority of proposed method compared to the median, bilateral, and guided filters has been experimentally shown in terms of noise removal and edge preserving properties.

Impact Assessment of Forest Development on Net Primary Production using Satellite Image Spatial-temporal Fusion and CASA-Model (위성영상 시공간 융합과 CASA 모형을 활용한 산지 개발사업의 식생 순일차생산량에 대한 영향 평가)

  • Jin, Yi-Hua;Zhu, Jing-Rong;Sung, Sun-Yong;Lee, Dong-Ku
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.20 no.4
    • /
    • pp.29-42
    • /
    • 2017
  • As the "Guidelines for GHG Environmental Assessment" was revised, it pointed out that the developers should evaluate GHG sequestration and storage of the developing site. However, the current guidelines only taking into account the quantitative reduction lost within the development site, and did not consider the qualitative decrease in the carbon sequestration capacity of forest edge produced by developments. In order to assess the quantitative and qualitative effects of vegetation carbon uptake, the CASA-NPP model and satellite image spatial-temporal fusion were used to estimate the annual net primary production in 2005 and 2015. The development projects between 2006 and 2014 were examined for evaluate quantitative changes in development site and qualitative changes in surroundings by development types. The RMSE value of the satellite image fusion results is less than 0.1 and approaches 0, and the correlation coefficient is more than 0.6, which shows relatively high prediction accuracy. The NPP estimation results range from 0 to $1335.53g\;C/m^2$ year before development and from 0 to $1333.77g\;C/m^2$ year after development. As a result of analyzing NPP reduction amount within the development area by type of forest development, the difference is not significant by type of development but it shows the lowest change in the sports facilities development. It was also found that the vegetation was most affected by the edge vegetation of industrial development. This suggests that the industrial development causes additional development in the surrounding area and indirectly influences the carbon sequestration function of edge vegetaion due to the increase of the edge and influx of disturbed species. The NPP calculation method and results presented in this study can be applied to quantitative and qualitative impact assessment of before and after development, and it can be applied to policies related to greenhouse gas in environmental impact assessment.

Edge Enhancement for Vessel Bottom Image Considering the Color Characteristics of Underwater Images (수중영상의 색상특성을 고려한 선박하부 영상의 윤곽선 강조 기법)

  • Choi, Hyun-Jun;Yang, Won-Jae;Kim, Bu-Ki
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.7
    • /
    • pp.926-932
    • /
    • 2017
  • Image distortion can occur when photographing deep sea targets with an optical camera. This problem arises because sunlight is not sufficiently transmitted due to seawater and various floating particles of dust. Particularly, color distortion takes place, causing green and blue color channels to be over emphasized due to water depth, while distortion of boundaries also occurs due to light refraction by seawater and floating particles of dust. These distortions degrade the overall quality of underwater images. In this paper, we analyze underwater images of the bottom of vessels. Based on the results, we propose a technique for color correction and edge enhancement. Experimental results show that the proposed method increases edge clarity by 3.39 % compared to the effective edges of the original underwater image. In addition, a quantitative evaluation and subjective image quality evaluation were concurrently performed. As a result, it was confirmed that object boundaries became clear with color correction. The color correction and contour enhancement method proposed in this paper can be applied in various fields requiring underwater imaging in the future.

Computer Vision-based Continuous Large-scale Site Monitoring System through Edge Computing and Small-Object Detection

  • Kim, Yeonjoo;Kim, Siyeon;Hwang, Sungjoo;Hong, Seok Hwan
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1243-1244
    • /
    • 2022
  • In recent years, the growing interest in off-site construction has led to factories scaling up their manufacturing and production processes in the construction sector. Consequently, continuous large-scale site monitoring in low-variability environments, such as prefabricated components production plants (precast concrete production), has gained increasing importance. Although many studies on computer vision-based site monitoring have been conducted, challenges for deploying this technology for large-scale field applications still remain. One of the issues is collecting and transmitting vast amounts of video data. Continuous site monitoring systems are based on real-time video data collection and analysis, which requires excessive computational resources and network traffic. In addition, it is difficult to integrate various object information with different sizes and scales into a single scene. Various sizes and types of objects (e.g., workers, heavy equipment, and materials) exist in a plant production environment, and these objects should be detected simultaneously for effective site monitoring. However, with the existing object detection algorithms, it is difficult to simultaneously detect objects with significant differences in size because collecting and training massive amounts of object image data with various scales is necessary. This study thus developed a large-scale site monitoring system using edge computing and a small-object detection system to solve these problems. Edge computing is a distributed information technology architecture wherein the image or video data is processed near the originating source, not on a centralized server or cloud. By inferring information from the AI computing module equipped with CCTVs and communicating only the processed information with the server, it is possible to reduce excessive network traffic. Small-object detection is an innovative method to detect different-sized objects by cropping the raw image and setting the appropriate number of rows and columns for image splitting based on the target object size. This enables the detection of small objects from cropped and magnified images. The detected small objects can then be expressed in the original image. In the inference process, this study used the YOLO-v5 algorithm, known for its fast processing speed and widely used for real-time object detection. This method could effectively detect large and even small objects that were difficult to detect with the existing object detection algorithms. When the large-scale site monitoring system was tested, it performed well in detecting small objects, such as workers in a large-scale view of construction sites, which were inaccurately detected by the existing algorithms. Our next goal is to incorporate various safety monitoring and risk analysis algorithms into this system, such as collision risk estimation, based on the time-to-collision concept, enabling the optimization of safety routes by accumulating workers' paths and inferring the risky areas based on workers' trajectory patterns. Through such developments, this continuous large-scale site monitoring system can guide a construction plant's safety management system more effectively.

  • PDF

A New Automatic Thresholding of Gray-Level Images Based on Maximum Entropy of Two-Dimensional Pixel Histogram (이웃 화소간 이차원 히스토그램 엔트로피 최대화를 이용한 명도영상 임계값 설정)

  • 김호연;남윤석;김혜규;박치항
    • Proceedings of the IEEK Conference
    • /
    • 2000.11d
    • /
    • pp.77-80
    • /
    • 2000
  • In this paper, we present a new automatic thresholding algorithm based on maximum entropy of two-dimensional pixel histogram. While most of the previous algorithms select thresholds depending only on the histogram of gray level itself in the image, the presented algorithm considers 2D relational histogram of gray levels of two adjacent pixels in the image. Thus, the new algorithm tends to leave salient edge features on the image after thresholding. The experimental results show the good performance of the presented algorithm.

  • PDF

A Study on the Application Method of Various Digital Image Processing in the IC Package (IC-패키지에 대한 각종 디지탈 화상처리 기술의 적용방법에 대한 연구)

  • Kim, Jae-Yeol
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.12 no.4
    • /
    • pp.18-25
    • /
    • 1993
  • This paper is to aim the microdefect evaluation of If package into a quantitative from NDI's image processing of ultrasonic wave. (1) Automatically repeated discrimination analysis method can be devided in the category of all kind of defects on IC package, and also can be possible to have a sampling of partial delamination. (2) It is possible that the information of edge section in silicon chip surrounding can be extractor by the partial image processing of IC package. Also, the crack detection is possible between the resin part and lead frame.

  • PDF

Development of Apple Color Grading System by Statistical Color Image Processing

  • Lim, Dong-Hoon
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.2
    • /
    • pp.325-332
    • /
    • 2003
  • This study was to develop a system for grading apples by their color using statistical image processing. T-test was used to detect edges in apple images and the chain code method was used for contour coding. The histogram and mean gray level of each RGB channel in a ring-shaped region was used to compare apple colors to reference apple color.

A Study of Tracking the Sun Using Image-processing (영상처리를 이용한 태양추적 시스템에 대한 연구)

  • Hong, Soon-Pil;Kim, Mun-Joo;Kim, Eun-Sung;Kim, Doo-Yong;Hong, Jin-Woo;Kim, Ki-Wan
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.321-323
    • /
    • 2006
  • The light gets darker from center to edge of the light source. Therefore, we can find the center of the sun using shading histogram. Moreover, we can track the exact position of the sun with the shading histogram. In this paper, we propose a new technique using image-processing of digital camera, in order to locate the position of the sun.

  • PDF

Facial Region Tracking in YCbCr Color Coordinates (YCbCr 컬러 영상 변환을 통한 얼굴 영역 자동 검출)

  • Han, M.H.;Kim, K.S.;Yoon, T.H.;Shin, S.W.;Kim, I.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.63-65
    • /
    • 2005
  • In this study, the automatic face tracking algorithm is proposed by using the color and edge information of a color image. To reduce the effects of variations in the illumination conditions, an acquired CCD color image is first transformed into YCbCr color coordinates, and subsequently the morphological image processing operations, and the elliptical geometric measures are applied to extract the refined facial area.

  • PDF