• Title/Summary/Keyword: Image Edge

Search Result 2,465, Processing Time 0.029 seconds

An Edge Extraction Method Using K-means Clustering In Image (영상에서 K-means 군집화를 이용한 윤곽선 검출 기법)

  • Kim, Ga-On;Lee, Gang-Seong;Lee, Sang-Hun
    • Journal of Digital Convergence
    • /
    • v.12 no.11
    • /
    • pp.281-288
    • /
    • 2014
  • A method for edge detection using K-means clustering is proposed in this paper. The method is performed through there steps. Histogram equalizing is applied to the image for the uniformed intensity distribution. Pixels are clustered by K-means clustering technique. Then Sobel mask is applied to detect edges. Experiments showed that this method detected edges better than conventional method.

Image Enhancement using Cross-Shaped Median Filter (격자형 메디안 필터를 이용한 영상향상)

  • Kim, Su-Yeong;Han, Man-Soo;Kang, Seong-Jun;Na, Cheol-Hun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.1006-1009
    • /
    • 2013
  • In this paper, a new technique for image enhancement using cross-shaped median filter with edge-detection algorithm is proposed. It consists of simple hypothesis test for edge-detection, and makes use of the cross-shaped window. This method is applied to noise corrupted image and its results are compared with those of median filters. As for the experimental result, method of cross-shaped median filter is superior to other median filters.

  • PDF

Remote Sensing Image Segmentation by a Hybrid Algorithm (Hybrid 알고리듬을 이용한 원격탐사영상의 분할)

  • 예철수;이쾌희
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.2
    • /
    • pp.107-116
    • /
    • 2002
  • A hybrid image segmentation algorithm is proposed which integrates edge-based and region-based techniques through the watershed algorithm. First, by using mean curvature diffusion coupled to min/max flow, noise is eliminated and thin edges are preserved. After images are segmented by watershed algorithm, the segmented regions are combined with neighbor regions. Region adjacency graph (RAG) is employed to analyze the relationship among the segmented regions. The graph nodes and edge costs in RAG correspond to segmented regions and dissimilarities between two adjacent regions respectively. After the most similar pair of regions is determined by searching minimum cost RAG edge, regions are merged and the RAG is updated. The proposed method efficiently reduces noise and provides one-pixel wide, closed contours.

Morphological segmentation based on edge detection-II for automatic concrete crack measurement

  • Su, Tung-Ching;Yang, Ming-Der
    • Computers and Concrete
    • /
    • v.21 no.6
    • /
    • pp.727-739
    • /
    • 2018
  • Crack is the most common typical feature of concrete deterioration, so routine monitoring and health assessment become essential for identifying failures and to set up an appropriate rehabilitation strategy in order to extend the service life of concrete structures. At present, image segmentation algorithms have been applied to crack analysis based on inspection images of concrete structures. The results of crack segmentation offering crack information, including length, width, and area is helpful to assist inspectors in surface inspection of concrete structures. This study proposed an algorithm of image segmentation enhancement, named morphological segmentation based on edge detection-II (MSED-II), to concrete crack segmentation. Several concrete pavement and building surfaces were imaged as the study materials. In addition, morphological operations followed by cross-curvature evaluation (CCE), an image segmentation technique of linear patterns, were also tested to evaluate their performance in concrete crack segmentation. The result indicates that MSED-II compared to CCE can lead to better quality of concrete crack segmentation. The least area, length, and width measurement errors of the concrete cracks are 5.68%, 0.23%, and 0.00%, respectively, that proves MSED-II effective for automatic measurement of concrete cracks.

Analysis of Applicability of RPC Correction Using Deep Learning-Based Edge Information Algorithm (딥러닝 기반 윤곽정보 추출자를 활용한 RPC 보정 기술 적용성 분석)

  • Jaewon Hur;Changhui Lee;Doochun Seo;Jaehong Oh;Changno Lee;Youkyung Han
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.4
    • /
    • pp.387-396
    • /
    • 2024
  • Most very high-resolution (VHR) satellite images provide rational polynomial coefficients (RPC) data to facilitate the transformation between ground coordinates and image coordinates. However, initial RPC often contains geometric errors, necessitating correction through matching with ground control points (GCPs). A GCP chip is a small image patch extracted from an orthorectified image together with height information of the center point, which can be directly used for geometric correction. Many studies have focused on area-based matching methods to accurately align GCP chips with VHR satellite images. In cases with seasonal differences or changed areas, edge-based algorithms are often used for matching due to the difficulty of relying solely on pixel values. However, traditional edge extraction algorithms,such as canny edge detectors, require appropriate threshold settings tailored to the spectral characteristics of satellite images. Therefore, this study utilizes deep learning-based edge information that is insensitive to the regional characteristics of satellite images for matching. Specifically,we use a pretrained pixel difference network (PiDiNet) to generate the edge maps for both satellite images and GCP chips. These edge maps are then used as input for normalized cross-correlation (NCC) and relative edge cross-correlation (RECC) to identify the peak points with the highest correlation between the two edge maps. To remove mismatched pairs and thus obtain the bias-compensated RPC, we iteratively apply the data snooping. Finally, we compare the results qualitatively and quantitatively with those obtained from traditional NCC and RECC methods. The PiDiNet network approach achieved high matching accuracy with root mean square error (RMSE) values ranging from 0.3 to 0.9 pixels. However, the PiDiNet-generated edges were thicker compared to those from the canny method, leading to slightly lower registration accuracy in some images. Nevertheless, PiDiNet consistently produced characteristic edge information, allowing for successful matching even in challenging regions. This study demonstrates that improving the robustness of edge-based registration methods can facilitate effective registration across diverse regions.

Efficient Data Representation of Stereo Images Using Edge-based Mesh Optimization (윤곽선 기반 메쉬 최적화를 이용한 효율적인 스테레오 영상 데이터 표현)

  • Park, Il-Kwon;Byun, Hye-Ran
    • Journal of Broadcast Engineering
    • /
    • v.14 no.3
    • /
    • pp.322-331
    • /
    • 2009
  • This paper proposes an efficient data representation of stereo images using edge-based mesh optimization. Mash-based two dimensional warping for stereo images mainly depends on the performance of a node selection and a disparity estimation of selected nodes. Therefore, the proposed method first of all constructs the feature map which consists of both strong edges and boundary lines of objects for node selection and then generates a grid-based mesh structure using initial nodes. The displacement of each nodal position is iteratively estimated by minimizing the predicted errors between target image and predicted image after two dimensional warping for local area. Generally, iterative two dimensional warping for optimized nodal position required a high time complexity. To overcome this problem, we assume that input stereo images are only horizontal disparity and that optimal nodal position is located on the edge include object boundary lines. Therefore, proposed iterative warping method performs searching process to find optimal nodal position only on edge lines along the horizontal lines. In the experiments, we compare our proposed method with the other mesh-based methods with respect to the quality by using Peak Signal to Noise Ratio (PSNR) according to the number of nodes. Furthermore, computational complexity for an optimal mesh generation is also estimated. Therefore, we have the results that our proposed method provides an efficient stereo image representation not only fast optimal mesh generation but also decreasing of quality deterioration in spite of a small number of nodes through our experiments.

Evidence Retrieval System using Edge and Generalized Hough Transform (Edge와 GHT를 이용한 증거물 검색 시스템)

  • 황혜정;채옥삼
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.233-236
    • /
    • 2003
  • In this paper, we propose a method to search the evidence such as a knife found in the crime scene based on GHT from an image database Such objects like knives are simitar in shape. The proposed method utilizes the small shape differences among objects as much as possible to distinguish an object from similar shaped objects. It consists of the GHT based candidate generation and top-down candidate verification. For the fast generation of the candidate 1ist, the GHT operation is performed un the down sampled edge list. The test results show that it can retrieve the correct object even with a pan of object in reasonable time.

  • PDF

Real Time Edge Detection for Rounding Machines Using by CCD Vision (Vision을 이용한 실시간 모서리 가공부재의 에지검출 자동화)

  • 박종현;함이준;노태정;김경환;손상익
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.695-698
    • /
    • 2000
  • Round-cornering machines are mainly used for cornering of stiffners for ship buildings. In the present time they have been operated manually by operators. so they are need to be operated automatically without regard to any shapes of stiffners. We developed the automatic round cornering system which consists of CCd Camera, PC and laser diode to detect automatically the edge of stiffners to be processed

  • PDF

Automatic Object Segmentation and Background Composition for Interactive Video Communications over Mobile Phones

  • Kim, Daehee;Oh, Jahwan;Jeon, Jieun;Lee, Junghyun
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.3
    • /
    • pp.125-132
    • /
    • 2012
  • This paper proposes an automatic object segmentation and background composition method for video communication over consumer mobile phones. The object regions were extracted based on the motion and color variance of the first two frames. To combine the motion and variance information, the Euclidean distance between the motion boundary pixel and the neighboring color variance edge pixels was calculated, and the nearest edge pixel was labeled to the object boundary. The labeling results were refined using the morphology for a more accurate and natural-looking boundary. The grow-cut segmentation algorithm begins in the expanded label map, where the inner and outer boundary belongs to the foreground and background, respectively. The segmented object region and a new background image stored a priori in the mobile phone was then composed. In the background composition process, the background motion was measured using the optical-flow, and the final result was synthesized by accurately locating the object region according to the motion information. This study can be considered an extended, improved version of the existing background composition algorithm by considering motion information in a video. The proposed segmentation algorithm reduces the computational complexity significantly by choosing the minimum resolution at each segmentation step. The experimental results showed that the proposed algorithm can generate a fast, accurate and natural-looking background composition.

  • PDF

Prediction by Edge Detection Technique for Lossless Multi-resolution Image Compression (경계선 정보를 이용한 다중 해상도 무손질 영상 압축을 위한 예측기법)

  • Kim, Tae-Hwa;Lee, Yun-Jin;Wei, Young-Chul
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.3
    • /
    • pp.170-176
    • /
    • 2010
  • Prediction is an important step in high-performance lossless data compression. In this paper, we propose a novel lossless image coding algorithm to increase prediction accuracy which can display low-resolution images quickly with a multi-resolution image technique. At each resolution, we use pixels of the previous resolution image to estimate current pixel values. For each pixel, we determine its estimated value by considering horizontal, vertical, diagonal edge information and average, weighted-average information obtained from its neighborhood pixels. In the experiment, we show that our method obtains better prediction than JPEG-LS or HINT.