• Title/Summary/Keyword: Image Edge

Search Result 2,465, Processing Time 0.034 seconds

Noise Elimination and Edge Detection based on Fuzzy Logic (퍼지 논리를 이용한 잡음 제거 및 에지 검출)

  • 이혜정;정성태;정석태
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.3
    • /
    • pp.506-512
    • /
    • 2003
  • The edge detection has been so far under a lot of studies on its methods, as a very important part of image recognition. Never the less the correct detection of the edge has been yet a difficult problem because of the various scopes of detection according to the applied field. One of those problems to be solved is the edge detection in images with noise. This paper presents an efficient method which removes noise and detect edge in the same framework based on fuzzy logic. The method consists of two steps. First, an efficient filtering is applied to eliminate the noise from original image. The filtering is performed by utilizing fuzzy MIN-MAX operator in three directions such as vertical, horizontal and diagonal angle of 3${\times}$3 mask. Second, edges are detected by using extended fuzzy Shanon Function.

A Study on an Image Noise Erase Method By to be an Image Noise Frequent Occur for Raining, in Measurement Machine Vision System for using CCD Camera Of Pantograph Sliding Plate Abrasion (판타그라프 습판마모의 머신비젼 측정에서 우천시 발생하는 영상의 노이즈 제거방법에 관한 연구)

  • Lee, Seong-Gwon;Lee, Dae-Won;Kim, Gil-Dong;Oh, Sang-Yoon;Kim, Seong-Min
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.872-898
    • /
    • 2007
  • Pantograph sliding plate abrasion auto-detect system, one of the electric rail car auto-detecting devices, is a system that decides how much abrasion and when to replace without an inspector physically looking at the abrasion on the wet plate using machine vision, a cutting-edge technology. This paper covers the cause of deteriorating reliability that affects pantograph wet plate edge detection due to noise added to the video when it rains. In order to remove such noise, problems should be checked through Smoothing, Averaging mask and Median filter using filtering technique and stable edge detection without being affected by noise should be induced in video measurement used in machine vision technology.

  • PDF

A Study on the Edge Detection using Adaptive Mask (적응 마스크를 이용한 에지 검출에 관한 연구)

  • Lee, Chang-Young;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.338-340
    • /
    • 2012
  • In images, the edge is an important element to analyze characteristics of the image and has been used selectively at several applications. Even now, many researches to detect and take advantage of theses edges are underway and in initially to detect edges, methods using the relation of adjacent pixels are proposed. Characteristic of these methods is that the processing speed of the algorithms is fast, but the specific weighted values are applied to all the pixels regardless of the images equally. In recent years, the research of the edge detection algorithm to adapt according to the image has been actively underway, in order to complement the drawbacks of the existing methods. Therefore, in order to detect the edge excellent characteristics In this paper, we proposed algorithm using adaptive mask.

  • PDF

DETECTION OF FRUITS ON NATURAL BACKGROUND

  • Limsiroratana, Somchai;Ikeda, Yoshio;Morio, Yoshinari
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.279-286
    • /
    • 2000
  • The objective of this research is to detect the papaya fruits on tree in an orchard. The detection of papaya on natural background is difficult because colors of fruits and background such as leaves are similarly green. We cannot separate it from leaves by color information. Therefore, this research will use shape information instead. First, we detect an interested object by detecting its boundary using edge detection technique. However, the edge detection will detect every objects boundary in the image. Therefore, shape description technique will be used to describe which one is the interested object boundary. The good shape description should be invariant in scaling, rotating, and translating. The successful concept is to use Fourier series, which is called "Fourier Descriptors". Elliptic Fourier Descriptors can completely represent any shape, which is selected to describe the shape of papaya. From the edge detection image, it takes a long time to match every boundary directly. The pre-processing task will reduce non-papaya edge to speed up matching time. The deformable template is used to optimize the matching. Then, clustering the similar shapes by the distance between each centroid, papaya can be completely detected from the background.

  • PDF

Edge Detection using Morphological Amoebas Noisy Images (잡음영상에서 아메바를 이용한 형태학적 에지검출)

  • Lee, Won-Yeol;Kim, Se-Yun;Kim, Young-Woo;Lim, Jae-Young;Lim, Dong-Hoon
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.3
    • /
    • pp.569-584
    • /
    • 2009
  • Edge detection in images has been widely used in image processing system and computer vision. Morphological edge detection has used structuring elements with fixed shapes. This paper presents morphological operators with non-fixed shape kernels, or amoebas, which take into account the image contour variations to adapt their shape. Experimental results are analyzed in both qualitative analysis through visual inspection and quantitative analysis with PFOM and ROC curves. The Experiments demonstrate that these novel operators outperform classical morphological operations with a fixed, space-invariant structuring elements for edge detection applications.

The Image Restoration using Dual Adaptive Regularization Operators (이중적 정칙화 연산자를 사용한 영상복원)

  • 김승묵;전우상;이태홍
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.1B
    • /
    • pp.141-147
    • /
    • 2000
  • In the restoration of degraded noisy motion blurred image, we have trade-off problem between smoothing the noise and restoration of the edge region. While the noise is smoothed, die edge or details will be corrupted. On the other hand, restoring the edge will amplify the noise. To solve this problem we propose an adaptive algorithm which uses I- H regularization operator for flat region and Laplacian regularization operator for edge region. Through the experiments, we verify that the proposed method shows better results in the suppression of the noise amplification in flat region, introducing less ringing artifacts in edge region and better ISNR than those of the conventional ones.

  • PDF

A Study on Wavelet-Based Edge Detector (웨이브렛 기반 에지 검출기에 관한 연구)

  • Kim, Nam-Ho;Bae, Sang-Bum
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.2
    • /
    • pp.91-97
    • /
    • 2007
  • Points of sharp variations in signals are the most important factors when analyzing the features of signals. And in the image, edges include diverse information such as the locations, shape and material. There have been a variety of researches on edge detections, among them, methods based on convolution in the spatial domain have been most popular. However at the early stage of the method, if the noise and many kinds of edges exist in the image, it is not easy to separate edges selectively from corrupted images by noise. In meantime, the wavelet transform for multiscale edge detection is being applied widely to analyze the properties of images in various fields. In this paper, we suggest a robust wavelet-based method, which selectively detects line-edge elements from images in the presence of noise.

  • PDF

Hough Transform Using Straight Line Information of Edge Pixels (에지 화소들의 직선 정보를 이용한 허프변환)

  • Kim, Jin-tae;Oh, Jeong-su
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.674-677
    • /
    • 2017
  • The Hough transform is the most representative algorithm for a straight line detection based on edge pixels. It shows excellent performance in a simple linear image but requires a considerable amount of computation in a noisy or complex image and has a problem of detecting a pseudo straight line easily. In this paper, we propose a straight line detection algorithm to solve the problem of the conventional Hough transform. The proposed algorithm detects the straight line information of edge pixels by using principal component analysis (PCA) before performing Hough transform and performs the Hough transform of the limited slope area in the valid edge pixels based on the detected straight line information of edge pixels. Simulation results show that the proposed algorithm reduces the amount of computation as well as eliminates pseudo straight lines.

  • PDF

An Efficient Color Edge Detection Using the Mahalanobis Distance

  • Khongkraphan, Kittiya
    • Journal of Information Processing Systems
    • /
    • v.10 no.4
    • /
    • pp.589-601
    • /
    • 2014
  • The performance of edge detection often relies on its ability to correctly determine the dissimilarities of connected pixels. For grayscale images, the dissimilarity of two pixels is estimated by a scalar difference of their intensities and for color images, this is done by using the vector difference (color distance) of the three-color components. The Euclidean distance in the RGB color space typically measures a color distance. However, the RGB space is not suitable for edge detection since its color components do not coincide with the information human perception uses to separate objects from backgrounds. In this paper, we propose a novel method for color edge detection by taking advantage of the HSV color space and the Mahalanobis distance. The HSV space models colors in a manner similar to human perception. The Mahalanobis distance independently considers the hue, saturation, and lightness and gives them different degrees of contribution for the measurement of color distances. Therefore, our method is robust against the change of lightness as compared to previous approaches. Furthermore, we will introduce a noise-resistant technique for determining image gradients. Various experiments on simulated and real-world images show that our approach outperforms several existing methods, especially when the images vary in lightness or are corrupted by noise.

Screen-shot Image Demorieing Using Multiple Domain Learning (다중 도메인 학습을 이용한 화면 촬영 영상 내 모아레 무늬 제거 기법)

  • Park, Hyunkook;Vien, An Gia;Lee, Chul
    • Journal of Broadcast Engineering
    • /
    • v.26 no.1
    • /
    • pp.3-13
    • /
    • 2021
  • We propose a moire artifacts removal algorithm for screen-shot images using multiple domain learning. First, we estimate clean preliminary images by exploiting complementary information of the moire artifacts in pixel value and frequency domains. Next, we estimate a clean edge map of the input moire image by developing a clean edge predictor. Then, we refine the pixel and frequency domain outputs to further improve the quality of the results using the estimated edge map as the guide information. Finally, the proposed algorithm obtains the final result by merging the two refined results. Experimental results on a public dataset demonstrate that the proposed algorithm outperforms conventional algorithms in quantitative and qualitative comparison.