Digital halftoning is a process to produce a binary image so that the original image and its binary counterpart appear similar when observed from a distance. Among digital halftoning methods, error diffusion is a procedure for generating high quality bilevel images from continuous-tone images but blurs the edge information in the bilevel images. To solve this problem, we propose the improved error diffusion using local spatial information of the original images. Based on the fact that the human vision perceives not a pixel but local mean of input image, we compute edge enhancement information(EEI) by appling the ratio of a pixel and its adjacent pixels to local mean. The weights applied to local means is computed using the ratio of local activity measure(LAM) to the difference between input pixels of 3$\times$3 blocks and theirs mean. LAM is the measure of luminance changes in local regions and is obtained by adding the square of the difference between input pixels of 3$\times$3 blocks and theirs mean. We add the value to a input pixel of quantizer to enhance edge. The performance of the proposed method is compared with conventional methods by measuring the edge correlation. The halftone images by using the proposed method show better quality due to the enhanced edge. And the detailed edge is preserved in the halftone images by using the proposed method. Also the proposed method improves the quality of halftone images because unpleasant patterns for human visual system are reduced.
In this paper, we propose a new stereo correspondence method for generating excellent external energy for snake-based object segmentation methods in stereo images. Our method first generates an edge-based disparity map by performing stereo correspondence between multi-level edge maps of the stereo image pair. Only edges of similar strength are considered for matching. To filter the disparity map for edges of the object of interest, the method estimates the object's disparity value by matching the pattern of edges of the region of interest in the left image against candidate patterns in the right image. The filtered edge map is then used to generate external energy for the snake. The proposed method has been tested on two snake models and results show a noticeable enhancement on performance of the snake when compared with other methods.
In order to solve problems in automatic quality inspection of tablet capsules, computation-efficient image processing technique, appropriate threshold setting, edge detection and segmentation methods are required. And since existing automatic system for quality inspection of tablet capsules is of very high cost, it needs to be reduced through the realization of low-price hardware system. This study suggests a technique that uses low-cost camera module to obtain image and inspects dents on tablet capsules and sorting them by applying TLS curve fitting technique and edge-based image segmentation. In order to assess the performance, the major classifications algorithm of PCA, ICA and SVM are used to evaluate training time, test time and accuracy for capsule image area and curve fitting edge data sets.
Journal of the Korean Institute of Telematics and Electronics S
/
v.36S
no.10
/
pp.72-82
/
1999
The error diffusion algorithm is excellent for reproducing continuous gray-scale images to bianry images and also has good edge characteristics. However, it is well known that artifacts with objectionable patterns can occur in the halftoned images. On the other hand, a halftone algorithm using blue noise mask has been proposed. where the halftoning is achieved by a pixelwise comparison of gray-scale image with an array, the blue noise mask. It doesn't have pattern artifacts, but the halftoned image looks unclear because the quantization errors are not feedbacked compared to the error diffusion. In this paper, edge enhanced error diffusion which dithers the threshold with the blue noise mask is proposed. We show that the proposed algorithm can produce unstructured and edge enhanced halftone images. This algorithm is analyzed by the concept of an equivalent input image. The performace of the proposed algorithm is compared with that of the conventional halftoning by measuring the radially averaged power spectrum and edge correlation.
A lane detection based on a road model or feature all need correct acquirement of information on the lane in a image, It is inefficient to implement a lane detection algorithm through the full range of a image when being applied to a real road in real time because of the calculating time. This paper defines two searching range of detecting lane in a road, First is searching mode that is searching the lane without any prior information of a road, Second is recognition mode, which is able to reduce the size and change the position of a searching range by predicting the position of a lane through the acquired information in a previous frame. It is allow to extract accurately and efficiently the edge candidates points of a lane as not conducting an unnecessary searching. By means of removing the perspective effect of the edge candidate points which are acquired by using the inverse perspective transformation, we transform the edge candidate information in the Image Coordinate System(ICS) into the plane-view image in the World Coordinate System(WCS). We define linear approximation filter and remove the fault edge candidate points by using it This paper aims to approximate more correctly the lane of an actual road by applying the least-mean square method with the fault-removed edge information for curve fitting.
Journal of the Korea Institute of Information and Communication Engineering
/
v.24
no.6
/
pp.722-728
/
2020
Digital image processing has been applied in a wide range of fields due to the development of IoT technology and plays an important role in data processing. Various techniques have been proposed to remove such noise, but the conventional impulse noise canceling methods are insufficient to remove noise of edge components of an image, and have a disadvantage of being greatly affected by random impulse noise. Therefore, in this paper, we propose an algorithm that effectively removes edge component noise in random impulse noise environment. The proposed algorithm calculates the threshold value by determining the noise level and switches the filtering process by comparing the reference value with the input pixel value. The proposed algorithm shows good performance in the existing method, and the simulation results show that the noise is effectively removed from the edge of the image.
The Journal of Korean Institute of Communications and Information Sciences
/
v.25
no.6B
/
pp.993-1001
/
2000
This research features a method that quantitatively evaluates the performance of edge detection algorithms. Contrary to conventional methods that evaluate the performance of edge detection as a function of the amount of noise added to he input image, the proposed method is capable of assessing the performance of edge detection algorithms based on chosen parameters that influence the performance of edge detection. We have proposed a quantitative measure, called average performance index, that compares the average performance of different edge detection algorithms. We have applied the method to the commonly used edge detectors, Sobel, LOG(Laplacian of Gaussian), and Canny edge detectors for noisy images that contain straight line edges and curved line edges. Two kinds of noises i.e, Gaussian and impulse noises, are used. Experimental results show that our method of quantitatively evaluating the performance of edge detection algorithms can facilitate the selection of the optimal dge detection algorithm for a given task.
Journal of the Korean Institute of Intelligent Systems
/
v.7
no.4
/
pp.18-28
/
1997
This paper presents image data compression using a classified vector quantization (CVQ) which categories
edge blocks according to the energy distribution of subimages in the discrete cosine transform
domain. Classifying the edge blocks enhances visual quality of the compressed images while maintaining
a high compression ratio. The proposed classification method categories subimages into eight
lypes of edge features according to an energy distribution. A neural network, trained with the data generated
from the proposed classification method, can successfully classify subimages to eight edge categories.
Experimental results are given to show how the (1VQ method incorporatd with a neural network
can produce faithful compressed image quality for high compression ratios.
When designing image sensors including a CMOS vision chip for edge detection, resolution is a significant factor to evaluate the performance. It is hard to improve the resolution of a bio-inspired CMOS vision using a resistive network because the vision chip contains many circuits such as a resistive network and several signal processing circuits as well as photocircuits of general image sensors such as CMOS image sensor (CIS). Low resolution restricts the use of the application systems. In this paper, we improve the resolution through layout and circuit optimization. Furthermore, we have designed a printed circuit board using FPGA which controls the vision chip. The vision chip for edge detection has been designed and fabricated by using $0.35{\mu}m$ double-poly four-metal CMOS technology, and its output characteristics have been investigated.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2015.10a
/
pp.711-714
/
2015
A new technique for image restoration using Weighted cross-shaped median filter with edge-detection algorithm is proposed in this paper. It consists of simple hypothesis test for edge-detection, and makes use of the weighted cross-shape window. This method is applied to noise corrupted image and its results are compared with those of median filters. As for the experimental result, method of weighted cross-shape median filter is superior to other median filters.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.