• Title/Summary/Keyword: Image Edge

Search Result 2,465, Processing Time 0.029 seconds

Low-Power Streamable AI Software Runtime Execution based on Collaborative Edge-Cloud Image Processing in Metaverse Applications (에지 클라우드 협동 이미지 처리기반 메타버스에서 스트리밍 가능한 저전력 AI 소프트웨어의 런타임 실행)

  • Kang, Myeongjin;Kim, Ho;Park, Jungwon;Yang, Seongbeom;Yun, Junseo;Park, Daejin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.11
    • /
    • pp.1577-1585
    • /
    • 2022
  • As the interest in the 4th industrial revolution and metaverse increases, metaverse with multi edge structure is proposed and noted. Metaverse is a structure that can create digital doctor-like system through a large amount of image processing and data transmission in a multi edge system. Since metaverse application requires calculating performance, which can reconstruct 3-D space, edge hardware's insufficient calculating performance has been a problem. To provide streamable AI software in runtime, image processing, and data transmission, which is edge's loads, needs to be lightweight. Also lightweight at the edge leads to power consumption reduction of the entire metaverse application system. In this paper, we propose collaborative edge-cloud image processing with remote image processing method and Region of Interest (ROI) to overcome edge's power performance and build streamable and runtime executable AI software. The proposed structure was implemented using a PC and an embedded board, and the reduction of time, power, and network communications were verified.

An Efficient Image Interpolation Algorithm using Edges Extracted Edges From Binary Image (이진영상으로부터 에지 추출을 통한 효율적인 영상보간 알고리즘)

  • Lee, Sang-Hoon;Kim, Sung-Geun;Lee, Dong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.4C
    • /
    • pp.363-370
    • /
    • 2009
  • Image interpolation addresses the problem of generating a high-resolution image from its low-resolution version. Classical linear interpolation algorithms are simple and popular, but they produce interpolated image with blurred edges and annoying artifacts, Thus, many edge-based interpolation algorithms have been proposed to improve the subjective quality of the interpolated image, especially around edges on the image. In this paper, we propose a new interpolation algorithm which uses edges extracted from binary image. The proposed algorithm is applied to the image after interpolating using 6-Tap FIR filter. The values of interpolation pixels on edges extracted from binary image are modified using neighborhood pixels on the same edge. Experimental results for various images show that the proposed method provides better performance than existing methods.

Development of an Edge-Based Algorithm for Moving-Object Detection Using Background Modeling

  • Shin, Won-Yong;Kabir, M. Humayun;Hoque, M. Robiul;Yang, Sung-Hyun
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.3
    • /
    • pp.193-197
    • /
    • 2014
  • Edges are a robust feature for object detection. In this paper, we present an edge-based background modeling method for the detection of moving objects. The edges in the image frames were mapped using robust Canny edge detector. Two edge maps were created and combined to calculate the ultimate moving-edge map. By selecting all the edge pixels of the current frame above the defined threshold of the ultimate moving edges, a temporary background-edge map was created. If the frequencies of the temporary background edge pixels for several frames were above the threshold, then those edge pixels were treated as background edge pixels. We conducted a performance comparison with previous works. The existing edge-based moving-object detection algorithms pose some difficulty due to the changes in background motion, object shape, illumination variation, and noises. The result of the performance evaluation shows that the proposed algorithm can detect moving objects efficiently in real-world scenarios.

Line-edge Detection using 2-D Wavelet Function in Mixed Noise Environment (혼합된 잡음환경에서 2-D 웨이브렛 함수를 이용한 라인-에지 검출)

  • Bae Sang-Bum;Kim Nam-Ho
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.6 no.2
    • /
    • pp.53-58
    • /
    • 2005
  • Points of sharp variations in images are the most important components when we analyze singularities of images. And they include a variety of information about the image's location and shape etc. So a lot of researches for detecting those edges have been continuing even now and at the early stage of the research, edge detection operators used relation among neighborhood pixels. However, such methods do not have excellent performance in the image which exists noise and can not detect edge selectively. In the meantime, the wavelet transform which is presented as a new technique of signal processing field is able to detect multiscale edge and is being applied widely in many fields that analyze singularities such as edge. For this reason, in this paper we detected image's line-edge elements with 2-D wavelet function, which is independent of line's width, in mixed noise environment.

  • PDF

Investigation on the Applicability of Defocus Blur Variations to Depth Calculation Using Target Sheet Images Captured by a DSLR Camera

  • Seo, Suyoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.2
    • /
    • pp.109-121
    • /
    • 2020
  • Depth calculation of objects in a scene from images is one of the most studied processes in the fields of image processing, computer vision, and photogrammetry. Conventionally, depth is calculated using a pair of overlapped images captured at different view points. However, there have been studies to calculate depths from a single image. Theoretically, it is known to be possible to calculate depth using the diameter of CoC (Circle of Confusion) caused by defocus under the assumption of a thin lens model. Thus, this study aims to verify the validity of the thin lens model to calculate depth from edge blur amount which corresponds to the radius of CoC. For this study, a commercially available DSLR (Digital Single Lens Reflex) camera was used to capture a set of target sheets which had different edge contrasts. In order to find out the pattern of the variations of edge blur against varying combination of FD (Focusing Distance) and OD (Object Distance), the camera was set to varying FD and target sheet images were captured at varying OD under each FD. Then, the edge blur and edge displacement were estimated from edge slope profiles using a brute-force method. The experimental results show that the pattern of the variations of edge blur observed in the target images was apart from their corresponding theoretical amounts derived under the thin lens assumption but can still be utilized to calculate depth from a single image for the cases similar to the limited conditions experimented under which the tendency between FD and OD is manifest.

Real time image processing and measurement of heart parameter using digital subtraction angiography (디지탈 혈관 조영장치를 이용한 실시간 영상처리와 심장파라미터의 측정)

  • 신동익;구본호;박광석;민병구;한만청
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.570-574
    • /
    • 1990
  • Detection of left ventricular boundary for the functional analysis of LV(left ventricle)is obtained using automatic boundary detection algorithm based on dynamic programming method. This scheme reduces the edge searching time and ensures connective edge detection, since it does not require general edge operator, edge thresholding and linking process of other edge. detection methods. The left ventricular diastolic volume and systolic volume and systolic volume were computed after this automatic boundary detection, and these Volume data wm applied to analyze LV ejection fraction.

  • PDF

Vision Sensing for the Ego-Lane Detection of a Vehicle (자동차의 자기 주행차선 검출을 위한 시각 센싱)

  • Kim, Dong-Uk;Do, Yongtae
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.137-141
    • /
    • 2018
  • Detecting the ego-lane of a vehicle (the lane on which the vehicle is currently running) is one of the basic techniques for a smart car. Vision sensing is a widely-used method for the ego-lane detection. Existing studies usually find road lane lines by detecting edge pixels in the image from a vehicle camera, and then connecting the edge pixels using Hough Transform. However, this approach takes rather long processing time, and too many straight lines are often detected resulting in false detections in various road conditions. In this paper, we find the lane lines by scanning only a limited number of horizontal lines within a small image region of interest. The horizontal image line scan replaces the edge detection process of existing methods. Automatic thresholding and spatiotemporal filtering procedures are also proposed in order to make our method reliable. In the experiments using real road images of different conditions, the proposed method resulted in high success rate.

GEOLOGICAL LINEAMENTS ANALYSIS BY IFSAR IMAGES

  • Wu Tzong-Dar;Chang Li Chi
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.169-172
    • /
    • 2005
  • Modem SAR interferometry (IFSAR) sensors delivering intensity images and corresponding digital terrain model (DTM) allow for a thorough surface lineament interpretation with the all-weather day-night applicability. In this paper, an automatic linear-feature detection algorithm for high-resolution SAR images acquired in Taiwan is proposed. Methodologies to extract linear features consist of several stages. First, the image denoising techniques are used to remove the speckle noise on the raw image. In this stage, the Lee filter has been chosen because of its superior performance. After denoising, the Coefficient of Variation Detector is performed on the result images for edge enhancements and detection. Dilation and erosion techniques are used to reconnect the fragmented lines. The Hough transform, which is a special case of a more general transform known as Radon transform, is a suitable method for line detection in our analysis. Finally, linear features are extracted from the binary edge image. The last stage contains many substeps such as edge thinning and curve pruning.

  • PDF

Adaptive Thresholding Method for Edge Detection (윤곽선 검출을 위한 적응적 임계치 결정 방법)

  • 임강모;신창훈;조남형;이주신
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.352-355
    • /
    • 2000
  • In this paper, we propose an adaptive thresholding for edge detection. first, we got histograms for background image and image with moving object, respectively. Then we make difference histogram between histograms of background and object image. A thresholding value is decided using gradient of peak to peak in the difference histogram. The experimentation is processed using a moving car in the road. The result is that edge is detected well regardless of the brightness.

  • PDF

Edge-Preserving and Adaptive Transmission Estimation for Effective Single Image Haze Removal

  • Kim, Jongho
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.2
    • /
    • pp.21-29
    • /
    • 2020
  • This paper presents an effective single image haze removal using edge-preserving and adaptive transmission estimation to enhance the visibility of outdoor images vulnerable to weather and environmental conditions with computational complexity reduction. The conventional methods involve the time-consuming refinement process. The proposed transmission estimation however does not require the refinement, since it preserves the edges effectively, which selects one between the pixel-based dark channel and the patch-based dark channel in the vicinity of edges. Moreover, we propose an adaptive transmission estimation to improve the visual quality particularly in bright areas like sky. Experimental results with various hazy images represent that the proposed method is superior to the conventional methods in both subjective visual quality and computational complexity. The proposed method can be adopted to compose a haze removal module for realtime devices such as mobile devices, digital cameras, autonomous vehicles, and so on as well as PCs that have enough processing resources.