• Title/Summary/Keyword: Image Edge

Search Result 2,472, Processing Time 0.027 seconds

Multi-legged robot system enabled to decide route and recognize obstacle based on hand posture recognition (손모양 인식기반의 경로교사와 장애물 인식이 가능한 자율보행 다족로봇 시스템)

  • Kim, Min-Sung;Jeong, Woo-Won;Kwan, Bae-Guen;Kang, Dong-Joong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.8
    • /
    • pp.1925-1936
    • /
    • 2010
  • In this paper, multi-legged robot was designed and produced using stable walking pattern algorithm. The robot had embedded camera and wireless communication function and it is possible to recognize both hand posture and obstacles. The algorithm decided moving paths, and recognized and avoided obstacles through Hough Transform using Edge Detection of inputed image from image sensor. The robot can be controlled by hand posture using Mahalanobis Distance and average value of skin's color pixel, which is previously learned in order to decide the destination. The developed system has shown obstacle detection rate of 96% and hand posture recognition rate of 94%.

Fuel-Coolant Interaction Visualization Test for In-Vessel Corium Retention External Reactor Vessel Cooling (IVR-ERVC) Condition

  • Na, Young Su;Hong, Seong-Ho;Song, Jin Ho;Hong, Seong-Wan
    • Nuclear Engineering and Technology
    • /
    • v.48 no.6
    • /
    • pp.1330-1337
    • /
    • 2016
  • A visualization test of the fuel-coolant interaction in the Test for Real cOrium Interaction with water (TROI) test facility was carried out. To experimentally simulate the In-Vessel corium Retention (IVR)- External Reactor Vessel Cooling (ERVC) conditions, prototypic corium was released directly into the coolant water without a free fall in a gas phase before making contact with the coolant. Corium (34.39 kg) consisting of uranium oxide and zirconium oxide with a weight ratio of 8:2 was superheated, and 22.54 kg of the 34.39 kg corium was passed through water contained in a transparent interaction vessel. An image of the corium jet behavior in the coolant was taken by a high-speed camera every millisecond. Thermocouple junctions installed in the vertical direction of the coolant were cut sequentially by the falling corium jet. It was clearly observed that the visualization image of the corium jet taken during the fuel-coolant interaction corresponded with the temperature variations in the direction of the falling melt. The corium penetrated through the coolant, and the jet leading edge velocity was 2.0 m/s. Debris smaller than 1 mm was 15% of the total weight of the debris collected after a fuel-coolant interaction test, and the mass median diameter was 2.9 mm.

Recognition of Resident Registration Cards Using ART-1 and PCA Algorithm (ART-1과 PCA 알고리즘을 이용한 주민등록증 인식)

  • Park, Sung-Dae;Woo, Young-Woon;Kim, Kwang-Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.9
    • /
    • pp.1786-1792
    • /
    • 2007
  • In this paper, we proposed a recognition system for resident registration cards using ART-1 and PCA algorithm. To extract registration numbers and issue date, Sobel mask and median filter are applied first and noise removal follows. From the noise-removed image, horizontal smearing is used to extract the regions, which are binarized with recursive binarization algorithm. After that vortical smearing is applied to restore corrupted lesions, which are mainly due to the horizontal smearing. from the restored image, areas of individual codes are extracted using 4-directional edge following algorithm and face area is extracted by the morphologic characteristics of a registration card. Extracted codes are recognized using ART-1 algorithm and PCA algorithm is used to verify the face. When the proposed method was applied to 25 real registration card images, 323 characters from 325 registration numbers and 166 characters from 167 issue date numbers, were correctly recognized. The verification test with 25 forged images showed that the proposed verification algorithm is robust to detect forgery.

The Design of Application Model using Manufacturing Data in Protection Film Process for Smart Manufacturing Innovation (스마트 제조혁신을 위한 보호필름 공정 제조데이터의 활용모델 설계)

  • Cha, ByungRae;Park, Sun;Lee, Seong-ho;Shin, Byeong-Chun;Kim, JongWon
    • Smart Media Journal
    • /
    • v.8 no.3
    • /
    • pp.95-103
    • /
    • 2019
  • The global manufacturing industry has reached the limit to growth due to a long-term recession, the rise of labor cost and raw material. As a solution to these difficulties, we promote the 4th Industry Revolution based on ICT and sensor technology. Following this trend, this paper proposes the design of a model using manufacturing data in the protection film process for smart manufacturing innovation. In the protective film process, the manufacturing data of temperature, pressure, humidity, and motion and thermal image are acquired by various sensors for the raw material blending, stirring, extrusion, and inspection processes. While the acquired manufacturing data is stored in mass storage, A.I. platform provides time-series image analysis and its visualization.

Modified Weight Filter Algorithm using Pixel Matching in AWGN Environment (AWGN 환경에서 화소매칭을 이용한 변형된 가중치 필터 알고리즘)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.10
    • /
    • pp.1310-1316
    • /
    • 2021
  • Recently, with the development of artificial intelligence and IoT technology, the importance of video processing such as object tracking, medical imaging, and object recognition is increasing. In particular, the noise reduction technology used in the preprocessing process demands the ability to effectively remove noise and maintain detailed features as the importance of system images increases. In this paper, we provide a modified weight filter based on pixel matching in an AWGN environment. The proposed algorithm uses a pixel matching method to maintain high-frequency components in which the pixel value of the image changes significantly, detects areas with highly relevant patterns in the peripheral area, and matches pixels required for output calculation. Classify the values. The final output is obtained by calculating the weight according to the similarity and spatial distance between the matching pixels with the center pixel in order to consider the edge component in the filtering process.

Quality grading of Hanwoo (Korean native cattle breed) sub-images using convolutional neural network

  • Kwon, Kyung-Do;Lee, Ahyeong;Lim, Jongkuk;Cho, Soohyun;Lee, Wanghee;Cho, Byoung-Kwan;Seo, Youngwook
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.1109-1122
    • /
    • 2020
  • The aim of this study was to develop a marbling classification and prediction model using small parts of sirloin images based on a deep learning algorithm, namely, a convolutional neural network (CNN). Samples were purchased from a commercial slaughterhouse in Korea, images for each grade were acquired, and the total images (n = 500) were assigned according to their grade number: 1++, 1+, 1, and both 2 & 3. The image acquisition system consists of a DSLR camera with a polarization filter to remove diffusive reflectance and two light sources (55 W). To correct the distorted original images, a radial correction algorithm was implemented. Color images of sirloins of Hanwoo (mixed with feeder cattle, steer, and calf) were divided and sub-images with image sizes of 161 × 161 were made to train the marbling prediction model. In this study, the convolutional neural network (CNN) has four convolution layers and yields prediction results in accordance with marbling grades (1++, 1+, 1, and 2&3). Every single layer uses a rectified linear unit (ReLU) function as an activation function and max-pooling is used for extracting the edge between fat and muscle and reducing the variance of the data. Prediction accuracy was measured using an accuracy and kappa coefficient from a confusion matrix. We summed the prediction of sub-images and determined the total average prediction accuracy. Training accuracy was 100% and the test accuracy was 86%, indicating comparably good performance using the CNN. This study provides classification potential for predicting the marbling grade using color images and a convolutional neural network algorithm.

Automatic analysis of golf swing from single-camera video sequences (단일 카메라 영상으로부터 골프 스윙의 자동 분석)

  • Kim, Pyeoung-Kee
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.14 no.5
    • /
    • pp.139-148
    • /
    • 2009
  • In this paper, I propose an automatic analysis method of golf swine from single-camera video sequences. I define necessary swing features for automatic swing analysis in 2-dimensional environment and present efficient swing analysis methods using various image processing techniques including line and edge detection. The proposed method has two characteristics compared with previous swing analysis systems and related studies. First, the proposed method enables an automatic swing analysis in 2-dimension while previous systems require 3-dimensional environment which is relatively complex and expensive to run. Second, swing analysis is done automatically without human intervention while other 2-dimensional systems necessarily need analysis by a golf expert. I tested the method on 20 swing video sequences and found the proposed method works effective for automatic analysis of golf swing.

Real-time Tooth Region Detection in Intraoral Scanner Images with Deep Learning (딥러닝을 이용한 구강 스캐너 이미지 내 치아 영역 실시간 검출)

  • Na-Yun, Park;Ji-Hoon Kim;Tae-Min Kim;Kyeong-Jin Song;Yu-Jin Byun;Min-Ju Kang․;Kyungkoo Jun;Jae-Gon Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.3
    • /
    • pp.1-6
    • /
    • 2023
  • In the realm of dental prosthesis fabrication, obtaining accurate impressions has historically been a challenging and inefficient process, often hindered by hygiene concerns and patient discomfort. Addressing these limitations, Company D recently introduced a cutting-edge solution by harnessing the potential of intraoral scan images to create 3D dental models. However, the complexity of these scan images, encompassing not only teeth and gums but also the palate, tongue, and other structures, posed a new set of challenges. In response, we propose a sophisticated real-time image segmentation algorithm that selectively extracts pertinent data, specifically focusing on teeth and gums, from oral scan images obtained through Company D's oral scanner for 3D model generation. A key challenge we tackled was the detection of the intricate molar regions, common in dental imaging, which we effectively addressed through intelligent data augmentation for enhanced training. By placing significant emphasis on both accuracy and speed, critical factors for real-time intraoral scanning, our proposed algorithm demonstrated exceptional performance, boasting an impressive accuracy rate of 0.91 and an unrivaled FPS of 92.4. Compared to existing algorithms, our solution exhibited superior outcomes when integrated into Company D's oral scanner. This algorithm is scheduled for deployment and commercialization within Company D's intraoral scanner.

Advanced Abdominal MRI Techniques and Problem-Solving Strategies (복부 자기공명영상 고급 기법과 문제 해결 전략)

  • Yoonhee Lee;Sungjin Yoon;So Hyun Park;Marcel Dominik Nickel
    • Journal of the Korean Society of Radiology
    • /
    • v.85 no.2
    • /
    • pp.345-362
    • /
    • 2024
  • MRI plays an important role in abdominal imaging because of its ability to detect and characterize focal lesions. However, MRI examinations have several challenges, such as comparatively long scan times and motion management through breath-holding maneuvers. Techniques for reducing scan time with acceptable image quality, such as parallel imaging, compressed sensing, and cutting-edge deep learning techniques, have been developed to enable problem-solving strategies. Additionally, free-breathing techniques for dynamic contrast-enhanced imaging, such as extra-dimensional-volumetric interpolated breath-hold examination, golden-angle radial sparse parallel, and liver acceleration volume acquisition Star, can help patients with severe dyspnea or those under sedation to undergo abdominal MRI. We aimed to present various advanced abdominal MRI techniques for reducing the scan time while maintaining image quality and free-breathing techniques for dynamic imaging and illustrate cases using the techniques mentioned above. A review of these advanced techniques can assist in the appropriate interpretation of sequences.

Lightweighting Techniques to Improve Real-time Recognition Performance of License Plate Using IP Cameras with Low-end NPUs (경량화 기법을 통한 저사양 NPU를 탑재한 IP 카메라에서의 실시간 차량번호 인식 성능 향상)

  • Ju-Hwan Han;Gye-Young Kim
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.11
    • /
    • pp.645-653
    • /
    • 2024
  • This paper proposes a lightweight method to improve the performance of real-time vehicle number recognition on low-specification embedded devices, to solve the problem of increasing physical space and cost due to the expansion of the vehicle number recognition market. The proposed method is based on a lightweight CNN model and uses techniques such as image preprocessing, hyperparameter optimization, activation function optimization, and quantization to simultaneously improve recognition accuracy and speed. Experiments show that, in the case of the SSD-lite model, image preprocessing with Shi-Tomasi corner detection, the application of ReLU4 as the activation function, and quantization resulted in an mAP@.5 of 0.94, which is an accuracy improvement of more than 10%, and a recognition time of 10.9 ms, which is a speed improvement of more than 10%. In addition, the proposed method meets real-time requirements (FPS ≥ 30) with minimal loss of accuracy and a speed improvement of about 10% on IP cameras using the EN675 SoC of EYENIX, an edge device with an NPU performance of 1.2 TOPS.