• Title/Summary/Keyword: Image Edge

Search Result 2,464, Processing Time 0.033 seconds

Video Saliency Detection Using Bi-directional LSTM

  • Chi, Yang;Li, Jinjiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.6
    • /
    • pp.2444-2463
    • /
    • 2020
  • Significant detection of video can more rationally allocate computing resources and reduce the amount of computation to improve accuracy. Deep learning can extract the edge features of the image, providing technical support for video saliency. This paper proposes a new detection method. We combine the Convolutional Neural Network (CNN) and the Deep Bidirectional LSTM Network (DB-LSTM) to learn the spatio-temporal features by exploring the object motion information and object motion information to generate video. A continuous frame of significant images. We also analyzed the sample database and found that human attention and significant conversion are time-dependent, so we also considered the significance detection of video cross-frame. Finally, experiments show that our method is superior to other advanced methods.

Multi-Class Classification Framework for Brain Tumor MR Image Classification by Using Deep CNN with Grid-Search Hyper Parameter Optimization Algorithm

  • Mukkapati, Naveen;Anbarasi, MS
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.101-110
    • /
    • 2022
  • Histopathological analysis of biopsy specimens is still used for diagnosis and classifying the brain tumors today. The available procedures are intrusive, time consuming, and inclined to human error. To overcome these disadvantages, need of implementing a fully automated deep learning-based model to classify brain tumor into multiple classes. The proposed CNN model with an accuracy of 92.98 % for categorizing tumors into five classes such as normal tumor, glioma tumor, meningioma tumor, pituitary tumor, and metastatic tumor. Using the grid search optimization approach, all of the critical hyper parameters of suggested CNN framework were instantly assigned. Alex Net, Inception v3, Res Net -50, VGG -16, and Google - Net are all examples of cutting-edge CNN models that are compared to the suggested CNN model. Using huge, publicly available clinical datasets, satisfactory classification results were produced. Physicians and radiologists can use the suggested CNN model to confirm their first screening for brain tumor Multi-classification.

X-Ray Security Checkpoint System Using Storage Media Detection Method Based on Deep Learning for Information Security

  • Lee, Han-Sung;Kim Kang-San;Kim, Won-Chan;Woo, Tea-Kun;Jung, Se-Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.10
    • /
    • pp.1433-1447
    • /
    • 2022
  • Recently, as the demand for physical security technology to prevent leakage of technical and business information of companies and public institutions increases, the high tech companies are operating X-ray security checkpoints at building entrances to protect their intellectual property and technology. X-ray security checkpoints are operated to detect cameras and storage media that may store or leak important technologies in the bags of people entering and leaving the building. In this study, we propose an X-ray security checkpoint system that automatically detects a storage medium in an X-ray image using a deep learning based object detection method. The proposed system consists of an edge computing unit and a cloud-computing unit. We employ the RetinaNet for automatic storage media detection in the X-ray security checkpoint images. The proposed approach achieved mAP of 95.92% on private dataset.

Parallel Dense Merging Network with Dilated Convolutions for Semantic Segmentation of Sports Movement Scene

  • Huang, Dongya;Zhang, Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.11
    • /
    • pp.3493-3506
    • /
    • 2022
  • In the field of scene segmentation, the precise segmentation of object boundaries in sports movement scene images is a great challenge. The geometric information and spatial information of the image are very important, but in many models, they are usually easy to be lost, which has a big influence on the performance of the model. To alleviate this problem, a parallel dense dilated convolution merging Network (termed PDDCM-Net) was proposed. The proposed PDDCMNet consists of a feature extractor, parallel dilated convolutions, and dense dilated convolutions merged with different dilation rates. We utilize different combinations of dilated convolutions that expand the receptive field of the model with fewer parameters than other advanced methods. Importantly, PDDCM-Net fuses both low-level and high-level information, in effect alleviating the problem of accurately segmenting the edge of the object and positioning the object position accurately. Experimental results validate that the proposed PDDCM-Net achieves a great improvement compared to several representative models on the COCO-Stuff data set.

The Excitation of Waves Associated with a Collapsing Granule in the Photosphere and Chromosphere

  • Kwak, Hannah;Chae, Jongchul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.42.1-42.1
    • /
    • 2019
  • We investigate a collapsing granule event and the associated excitation of waves in the photosphere and chromosphere. Our observations were carried out by using the Fast Imaging Solar Spectrograph and the TiO 7057Å Broadband Filter Imager of the 1.6 meter Goode Solar Telescope of Big Bear Solar Observatory. During our observations, we found a granule which became significantly darker than neighboring granules. The edge of the granule collapsed within several minutes. After the collapse, transient oscillations occurred in the photospheric and chromospheric layers. The dominant period of the oscillations is close to 4.5 minutes in the photosphere and 4 minutes in the chromosphere. Moreover, in the Ca II-0.5Å raster image, we observed brightenings which are considered as the manifestation of shock waves. Based on our results, we suggest that the impulsive collapse of a granule can generate upward-propagating acoustic waves in the solar quiet region that ultimately develop into shocks.

  • PDF

Virtual Nail Art Using Nail Detection (손톱 검출을 이용한 가상 네일아트)

  • Mun, Sae-byeol;Heo, Hoon;Oh, Jeong-su
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.413-415
    • /
    • 2021
  • This paper proposes a nail detection algorithm using OpenPose and implements virtual nail art using it. Based on the key points detected by OpenPose, the finger area is detected using skin color characteristics for each finger. The nail region is detected from the edge image of the detected finger region. Then, a virtual nail art is implemented by synthesizing nail tips in the nail area. In a somewhat controlled shooting environment, simulation results show that the proposed algorithm detects nail areas well and implements virtual nail art well.

  • PDF

Implementation of Linear Detection Algorithm using Raspberry Pi and OpenCV (라즈베리파이와 OpenCV를 활용한 선형 검출 알고리즘 구현)

  • Lee, Sung-jin;Choi, Jun-hyeong;Choi, Byeong-yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.637-639
    • /
    • 2021
  • As autonomous driving research is actively progressing, lane detection is an essential technology in ADAS (Advanced Driver Assistance System) to locate a vehicle and maintain a route. Lane detection is detected using an image processing algorithm such as Hough transform and RANSAC (Random Sample Consensus). This paper implements a linear shape detection algorithm using OpenCV on Raspberry Pi 3 B+. Thresholds were set through OpenCV Gaussian blur structure and Canny edge detection, and lane recognition was successful through linear detection algorithm.

  • PDF

Camera System with Edge Computing for Data Acquisition of Growth Image by Strawberry Farming (딸기 생장정보 취득을 위한 엣지 컴퓨팅 기술이 탑재된 영상촬영시스템)

  • Choi, Seoung Wook;Han, Kwan-Soo;Lee, Ju Han
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.87-89
    • /
    • 2022
  • ICT 정보기술에 기초한 시설원예의 복합환경제어 시스템에 빅데이터 분석과 인공지능기술을 접목하여 농업생산성을 극대화하기 위한 영농기법을 딸기 농업에 적용하는 기술을 개발하고 있으며, 본 논문에서는 이 개발과정의 중간결과물에 대해 기술하게 되며, 향후 진행할 내용에 대해서도 논문 중에 간략히 소개되어 있다. 대상 재배작물인 딸기의 재배방식에 적합한 영상촬영 시스템을 고려하여 시스템을 구성하였고, 경제적인 촬영시스템이 되도록 시스템 설계를 하였으며, 엣지 컴퓨팅 기술을 응용하여 궁극의 목표인 신속하고 다양한 의사결정 서비스를 로컬의 로봇시스템에 구현할 예정이다.

  • PDF

Automatic indoor progress monitoring using BIM and computer vision

  • Deng, Yichuan;Hong, Hao;Luo, Han;Deng, Hui
    • International conference on construction engineering and project management
    • /
    • 2017.10a
    • /
    • pp.252-259
    • /
    • 2017
  • Nowadays, the existing manual method for recording actual progress of the construction site has some drawbacks, such as great reliance on the experience of professional engineers, work-intensive, time consuming and error prone. A method integrating computer vision and BIM(Building Information Modeling) is presented for indoor automatic progress monitoring. The developed method can accurately calculate the engineering quantity of target component in the time-lapse images. Firstly, sample images of on-site target are collected for training the classifier. After the construction images are identified by edge detection and classifier, a voting algorithm based on mathematical geometry and vector operation will divide the target contour. Then, according to the camera calibration principle, the image pixel coordinates are conversed into the real world Coordinate and the real coordinates would be corrected with the help of the geometric information in BIM model. Finally, the actual engineering quantity is calculated.

  • PDF

Medical Image Classification and Retrieval using MPEG-7 Visual Descriptors and Multi-Class SVM(Support Vector Machine) (MPEG-7 시각 기술자와 멀티 클래스 SVM을 이용한 의료 영상 분류와 검색)

  • Shim, Jeong-Hee;Ko, Byoung-Chul;Nam, Jae-Yeal
    • Annual Conference of KIPS
    • /
    • 2008.05a
    • /
    • pp.135-138
    • /
    • 2008
  • 본 논문은 의료 영상에 대한 효과적인 분류와 검색을 위한 알고리즘을 제안한다. 영상 분류와 검색을 위해서 MPEG-7 표준 기술자인 색 구조 기술자와 경계선 히스토그램 기술자를 사용해 영상들에 대한 특징 값을 추출한다. 이렇게 구해진 특징 값들을 의료 영상의 분류와 검색에 적용해 본 결과 비교적 낮은 성능을 보여줌을 확인하고 앞서 구해진 특징 값들을 교사 학습 방법인 SVM(Support Vector Machine)과 비교사 학습 방법인 FCM(Fuzzy C-means Clustering)에 적용시켰다. 기존 연구에서는 SVM과 FCM의 통합으로 의료 영상에 대한 분류와 검색을 시행하였지만 본 논문에서 실험한 결과 SVM과 MPEG-7 시각 기술자 중에 하나인 EHD(Edge Histogram Descriptor)를 가중치 선형 결합하여 실험한 결과가 더 정확한 분류와 높은 검색 성능을 나타냄을 확인하였다.