• Title/Summary/Keyword: Image Edge

Search Result 2,464, Processing Time 0.033 seconds

Adjacent Pixels based Noise Mitigation Filter in Salt & Pepper Noise Environments (Salt & Pepper 잡음 환경에서 인접 픽셀 기반 잡음 완화 필터)

  • Seong, Chi Hyuk;Shin, Soo Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.6
    • /
    • pp.65-71
    • /
    • 2017
  • Digital images and videos are subject to various types of noise during storage and transmission. Among these noises, Salt & Pepper noise degrades the compression efficiency of the original data and causing deterioration of performance in edge detection or segmentation used in an image processing method. In order to mitigate this noise, there are many filters such as Median Filter, Weighted Median Filter, Center Weighted Median Filter, Switching Weighted Median Filter and Adaptive Median Filter. However these methods are inferior in performance at high noise density. In this paper we propose a new type of filter for noise mitigation in wireless communication environment where Salt & Pepper noise occurs. The proposed filter detects the location of the damaged pixel by Salt & Pepper noise detection and mitigates the noise by using adjacent pixel values which are not damaged in a certain area. Among the proposed filters, the performance of the filter using the $3{\times}3$ error mask is compared with that of the conventional methods and it is confirmed that when density of noise in the image is 95%, their performances are improved as 13.24 dB compared to MF and 13.09 dB compared to AMF.

Selection on Optimal Bands to EstimateYield of the Chinese Cabbage Using Drone-based Hyperspectral Image (드론 기반 초분광 영상을 이용한 배추 단수 추정의 최적밴드 선정)

  • Na, Sang-il;Park, Chan-won;So, Kyu-ho;Ahn, Ho-yong;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.3
    • /
    • pp.375-387
    • /
    • 2019
  • The use of drone-based hyperspectral image offers considerable advantages in high resolution remote sensing applications. The primary objective of this study was to select the optimal bands based on hyperspectral image for the estimation yield of the chinese cabbage. The hyperspectral narrow bands were acquired over 403.36 to 995.19 nm using a 3.97 nm wide, 150 bands, drone-based hyperspectral imaging sensor. Fresh weight data were obtained from 2,031 sample for each field survey. Normalized difference vegetation indices were computed using red, red-edge and near-infrared bands and their relationship with quantitative each fresh weights were established and compared. As a result, predominant proportion of fresh weights are best estimated using data from three narrow bands, in order of importance, centered around 697.29 nm (red band), 717.15 nm (red-edge band) and 808.51 nm (near-infrared band). The study determined three spectral bands that provide optimal chinese cabbage productivity in the visible and near-infrared portion of the spectrum.

An Implementation of the OTB Extension to Produce RapidEye Surface Reflectance and Its Accuracy Validation Experiment (RapidEye 영상정보의 지표반사도 생성을 위한 OTB Extension 개발과 정확도 검증 실험)

  • Kim, Kwangseob;Lee, Kiwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.485-496
    • /
    • 2022
  • This study is for the software implementation to generate atmospheric and surface reflectance products from RapidEye satellite imagery. The software is an extension based on Orfeo Toolbox (OTB) and an open-source remote sensing software including calibration modules which use an absolute atmospheric correction algorithm. In order to verify the performance of the program, the accuracy of the product was validated by a test image on the Radiometric Calibration Network (RadCalNet) site. In addition, the accuracy of the surface reflectance product generated from the KOMPSAT-3A image, the surface reflectance of Landsat Analysis Ready Data (ARD) of the same site, and near acquisition date were compared with RapidEye-based one. At the same time, a comparative study was carried out with the processing results using QUick Atmospheric Correction (QUAC) and Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) tool supported by a commercial tool for the same image. Similar to the KOMPSAT-3A-based surface reflectance product, the results obtained from RapidEye Extension showed accuracy of agreement level within 5%, compared with RadCalNet data. They also showed better accuracy in all band images than the results using QUAC or FLAASH tool. As the importance of the Red-Edge band in agriculture, forests, and the environment applications is being emphasized, it is expected that the utilization of the surface reflectance products of RapidEye images produced using this program will also increase.

Usefulness of Median Modified Wiener Filter Algorithm for Noise Reduction in Liver Cirrhosis Ultrasound Image (간경변 초음파 영상에서의 노이즈 제거를 위한 Median Modified Wiener Filter 알고리즘의 유용성)

  • Seung-Yeon Kim;Soo-Min Kang;Youngjin Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.911-917
    • /
    • 2023
  • The method of observing nodular changes on the liver surface using clinical ultrasonography is useful for diagnosing cirrhosis. However, the speckle noise that inevitably occurs in ultrasound images makes it difficult to identify changes in the liver surface and echo patterns, which has a negative impact on the diagnosis of cirrhosis. The purpose of this study is to model the median modified Wiener filter (MMWF), which can efficiently reduce noise in cirrhotic ultrasound images, and confirm its applicability. Ultrasound images were acquired using an ACR phantom and an actual cirrhotic patient, and the proposed MMWF algorithm and conventional noise reduction algorithm were applied to each image. Coefficient of variation (COV) and edge rise distance (ERD) were used as quantitative image quality evaluation factors for the acquired ultrasound images. We confirmed that the MMWF algorithm improved both COV and ERD values compared to the conventional noise reduction algorithm in both ACR phantom and real ultrasound images of cirrhotic patients. In conclusion, the proposed MMWF algorithm is expected to contribute to improving the diagnosis rate of cirrhosis patients by reducing the noise level and improving spatial resolution at the same time.

Video Scene Detection using Shot Clustering based on Visual Features (시각적 특징을 기반한 샷 클러스터링을 통한 비디오 씬 탐지 기법)

  • Shin, Dong-Wook;Kim, Tae-Hwan;Choi, Joong-Min
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.47-60
    • /
    • 2012
  • Video data comes in the form of the unstructured and the complex structure. As the importance of efficient management and retrieval for video data increases, studies on the video parsing based on the visual features contained in the video contents are researched to reconstruct video data as the meaningful structure. The early studies on video parsing are focused on splitting video data into shots, but detecting the shot boundary defined with the physical boundary does not cosider the semantic association of video data. Recently, studies on structuralizing video shots having the semantic association to the video scene defined with the semantic boundary by utilizing clustering methods are actively progressed. Previous studies on detecting the video scene try to detect video scenes by utilizing clustering algorithms based on the similarity measure between video shots mainly depended on color features. However, the correct identification of a video shot or scene and the detection of the gradual transitions such as dissolve, fade and wipe are difficult because color features of video data contain a noise and are abruptly changed due to the intervention of an unexpected object. In this paper, to solve these problems, we propose the Scene Detector by using Color histogram, corner Edge and Object color histogram (SDCEO) that clusters similar shots organizing same event based on visual features including the color histogram, the corner edge and the object color histogram to detect video scenes. The SDCEO is worthy of notice in a sense that it uses the edge feature with the color feature, and as a result, it effectively detects the gradual transitions as well as the abrupt transitions. The SDCEO consists of the Shot Bound Identifier and the Video Scene Detector. The Shot Bound Identifier is comprised of the Color Histogram Analysis step and the Corner Edge Analysis step. In the Color Histogram Analysis step, SDCEO uses the color histogram feature to organizing shot boundaries. The color histogram, recording the percentage of each quantized color among all pixels in a frame, are chosen for their good performance, as also reported in other work of content-based image and video analysis. To organize shot boundaries, SDCEO joins associated sequential frames into shot boundaries by measuring the similarity of the color histogram between frames. In the Corner Edge Analysis step, SDCEO identifies the final shot boundaries by using the corner edge feature. SDCEO detect associated shot boundaries comparing the corner edge feature between the last frame of previous shot boundary and the first frame of next shot boundary. In the Key-frame Extraction step, SDCEO compares each frame with all frames and measures the similarity by using histogram euclidean distance, and then select the frame the most similar with all frames contained in same shot boundary as the key-frame. Video Scene Detector clusters associated shots organizing same event by utilizing the hierarchical agglomerative clustering method based on the visual features including the color histogram and the object color histogram. After detecting video scenes, SDCEO organizes final video scene by repetitive clustering until the simiarity distance between shot boundaries less than the threshold h. In this paper, we construct the prototype of SDCEO and experiments are carried out with the baseline data that are manually constructed, and the experimental results that the precision of shot boundary detection is 93.3% and the precision of video scene detection is 83.3% are satisfactory.

Infant Retinal Images Optic Disk Detection Using Active Contours

  • Charmjuree, Thammanoon;Uyyanonvara, Bunyarit;Makhanov, Stanislav S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.312-316
    • /
    • 2004
  • The paper presents a technique to identify the boundary of the optic disc in infant retinal digital images using an approach based on active contours (snakes). The technique can be used to be develop a automate system in order to help the ophthalmologist's diagnosis the retinopathy of prematurity (ROP) disease which may occurred on preterm infant,. The optic disc detection is one of the fundamental step which could help to create an automate diagnose system for the doctors we use a new kind of active contour (snake) method has been developed by Chenyang et. al. [1], based on a new type of external force field, called gradient vector flow, or GVF. GVF is computed as a diffusion of the gradient vectors of a gray-level or binary edge map derived from the image. The testing results on a set of infant retinal ROP images verify the effectiveness of the proposed methods. We show that GVF has a large capture range and it's able to move snakes into boundary concavities of optic disc and finally the optic disk boundary was determined.

  • PDF

Automatic Bone Segmentation from CT Images Using Chan-Vese Multiphase Active Contour

  • Truc, P.T.H.;Kim, T.S.;Kim, Y.H.;Ahn, Y.B.;Lee, Y.K.;Lee, S.Y.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.6
    • /
    • pp.713-720
    • /
    • 2007
  • In image-guided surgery, automatic bone segmentation of Computed Tomography (CT) images is an important but challenging step. Previous attempts include intensity-, edge-, region-, and deformable curve-based approaches [1], but none claims fully satisfactory performance. Although active contour (AC) techniques possess many excellent characteristics, their applications in CT image segmentation have not worthily exploited yet. In this study, we have evaluated the automaticity and performance of the model of Chan-Vese Multiphase AC Without Edges towards knee bone segmentation from CT images. This model is suitable because it is initialization-insensitive and topology-adaptive. Its segmentation results have been qualitatively compared with those from four other widely used AC models: namely Gradient Vector Flow (GVF) AC, Geometric AC, Geodesic AC, and GVF Fast Geometric AC. To quantitatively evaluate its performance, the results from a commercial software and a medical expert have been used. The evaluation results show that the Chan-Vese model provides superior performance with least user interaction, proving its suitability for automatic bone segmentation from CT images.

Implementation of Motion Picture Processor for Low-cost CSTN-LCD (저가형 CSTN-LCD 동영상 프로세서 설계)

  • Kim, Yong-Bum;Choi, Myung-Ryul
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.8
    • /
    • pp.963-970
    • /
    • 2006
  • In this paper, we proposed a motion picture processor for using low-cost color super twisted nematic liquid crystal display(CSTN-LCD). The proposed processor apply a new driving scheme using SFP(Subgroup Frame Pattern), so we extends gray scale and eliminates flicker phenomenon. In addition, we apply the BFI (Black Field Insertion) to the design compensated for response time of a LC (Liquid Crystal). We use an edge enhancement and interpolation method to improve image quality of motion picture. The hardware architecture of proposed processor has been implemented and verified on a prototype FPGA board. The proposed method can be used in the display devices such as PDA(Personal Digital Assistants), mobile phone, and PMP(Portable Multimedia Player).

  • PDF

Development of Classification System for Thermal Comfort Behavior of Pigs by Image Processing and Neural Network (영상처리와 인공신경망을 이용한 돼지의 체온조절행동 분류 시스템 개발)

  • 장동일;임영일;장홍희
    • Journal of Biosystems Engineering
    • /
    • v.24 no.5
    • /
    • pp.431-438
    • /
    • 1999
  • The environmental control based on interactive thermoregulatory behavior for swine production has many advantages over the conventional temperature-based control methods. Therefore, this study was conducted to compare various feature selection methods using postural images of growing pigs under various environmental conditions. A color CCD camera was used to capture the behavioral images which were then modified to binary images. The binary images were processed by thresholding, edge detection, and thinning techniques to separate the pigs from their background. Following feature were used for the input patterns to the neural network ; \circled1 perimeter, \circled2 area, \circled3 Fourier coefficients (5$\times$5), \circled4 combination of (\circled1 + \circled2), \circled5 combination of (\circled1 + \circled3), \circled6 combination of (\circled2 + \circled3), and \circled7 combination of (\circled1 + \circled2 + \circled3). Using the above each input pattern, the neural network could classify training images with the success rates of 96%, 96%, 96%, 100%, 100%, 96%, 100%, and testing images with those of 88%, 86%, 93%, 96%, 91%, 90%, 98%, respectively. Thus, the combination of perimeter, area and Fourier coefficients of the thinning images as neural network features gave the best performance (98%) in the behavioral classification.

  • PDF

WAVELET-BASED FOREST AREAS CLASSIFICATION BY USING HIGH RESOLUTION IMAGERY

  • Yoon Bo-Yeol;Kim Choen
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.698-701
    • /
    • 2005
  • This paper examines that is extracted certain information in forest areas within high resolution imagery based on wavelet transformation. First of all, study areas are selected one more species distributed spots refer to forest type map. Next, study area is cut 256 x 256 pixels size because of image processing problem in large volume data. Prior to wavelet transformation, five texture parameters (contrast, dissimilarity, entropy, homogeneity, Angular Second Moment (ASM≫ calculated by using Gray Level Co-occurrence Matrix (GLCM). Five texture images are set that shifting window size is 3x3, distance .is 1 pixel, and angle is 45 degrees used. Wavelet function is selected Daubechies 4 wavelet basis functions. Result is summarized 3 points; First, Wavelet transformation images derived from contrast, dissimilarity (texture parameters) have on effect on edge elements detection and will have probability used forest road detection. Second, Wavelet fusion images derived from texture parameters and original image can apply to forest area classification because of clustering in Homogeneous forest type structure. Third, for grading evaluation in forest fire damaged area, if data fusion of established classification method, GLCM texture extraction concept and wavelet transformation technique effectively applied forest areas (also other areas), will obtain high accuracy result.

  • PDF