• Title/Summary/Keyword: Image Edge

Search Result 2,464, Processing Time 0.033 seconds

Development of Automatic System for 3D Visualization of Biological Objects

  • Choi, Tae Hyun;Hwnag, Heon;Kim, Chul Su
    • Agricultural and Biosystems Engineering
    • /
    • v.1 no.2
    • /
    • pp.95-99
    • /
    • 2000
  • Nondestructive methods such as ultrasonic and magnetic resonance imaging systems have many advantages but still much expensive. And they do not give exact color information and may miss some details. If it is allowed to destruct some biological objects to get interior and exterior informations, constructing 3D image form a series of slices sectional images gives more useful information with relatively low cost. In this paper, a PC based automatic 3D model generator was developed. The system was composed of three modules. The first module was the object handling and image acquisition module, which fed and sliced the object sequentially and maintains the paraffine cool to be in solid state and captures the sectional image consecutively. The second one was the system control and interface module, which controls actuators for feeding, slicing, and image capturing. And the last was the image processing and visualization module, which processed a series of acquired sectional images and generated 3D volumetric model. Handling module was composed of the gripper, which grasped and fed the object and the cutting device, which cuts the object by moving cutting edge forward and backward. sliced sectional images were acquired and saved in a form of bitmap file. 2D sectional image files were segmented from the background paraffine and utilized to generate the 3D model. Once 3-D model was constructed on the computer, user could manipulated it with various transformation methods such as translation, rotation, scaling including arbitrary sectional view.

  • PDF

Algorithm Development of a Visibility Monitoring Technique Using Digital Image Analysis

  • Pokhrel, Rajib;Lee, Hee-Kwan
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.1
    • /
    • pp.8-20
    • /
    • 2011
  • Atmospheric visibility is one of the indicators used to evaluate the status of air quality. Based on a conceptual definition of visibility as the maximum distance at which the outline of the selected target can be recognized, an image analysis technique is introduced here and an algorithm is developed for visibility monitoring. Although there are various measurement techniques, ranging from bulk and precise instruments to naked eye observation techniques, each has their own limitations. In this study, a series of image analysis techniques were introduced and examined for in-situ application. An imaging system was built up using a digital camera and was installed on the study sites in Incheon and Seoul separately. Visual range was also monitored by using a dual technology visibility sensor in Incheon and transmissometer in Seoul simultaneously. The Sobel mask filter was applied to detect the edge lines of objects by extracting the high frequency from the digital image. The root mean square (RMS) index of variation among the pixels in the image was substantially correlated with the visual ranges in Incheon and Seoul with correlations of $R^2$=0.88 and $R^2$=0.71, respectively. The regression line equations between the visual range and the RMS index in Incheon and Seoul were VR=$2.36e^{0.46{\times}(RMS)}$ and VR=$3.18e^{0.15{\times}(RMS)}$, respectively. It was also confirmed that the fine particles ($PM_{2.5}$) have more impacts to the impairment of visibility than coarse particles.

Maxima Analysis from Visualized Image based on Multi-Resolution Analysis (다중해상도 웨이브렛 해석을 기본으로 한 가시화 영상의 극대값 해석)

  • Park, Young-Sik;Kim, Og-Gyu
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.2
    • /
    • pp.157-162
    • /
    • 2010
  • In this paper we propose a fractal analysis based on the discrete wavelet transform. It is well known that Fourier Transform is widely used for frequency analysis of random signal. However, the frequency domain is not used for expressing the sudden signal change and non-stationary signal at the time-axis by this method. Maximum value in the wavelet modules can be expressed by the Lipschitz exponent, which is useful to represent the characteristics of signal or the edge of an image. It is possible to reconstruct the original image only by using the few maximum points. The v possible image It iusing oil was acquired to interpret the maximum value. ufter that, it was applied to the v possible image of a ship model. In addition, the fractal dimens by by the conlapse process of the sediment particle was examined. In this paper, the fractal dimens by has been obtained by the maximum value and the experiment obtained from the visualized image also acquired the same result as existing methods.

An Image Denoising Algorithm for the Mobile Phone Cameras (스마트폰 카메라를 위한 영상 잡음 제거 알고리즘)

  • Kim, Sung-Un
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.5
    • /
    • pp.601-608
    • /
    • 2014
  • In this study we propose an image denoising algorithm appropriate for mobile smart phone equipped with limited computing ability, which has better performance and at the same time comparable quality comparing with previous studies. The proposed image denoising algorithm for mobile smart phone cameras in low level light environment reduces computational complexity and also prevents edge smoothing by extracting just Gaussian noises from the noisy input image. According to the experiment result, we verified that our algorithm has much better PSNR value than methods applying mean filter or median filter. Also the result image from our algorithm has better clear quality since it preserves edges while smoothing input image. Moreover, the suggested algorithm reduces computational complexity about 52% compared to the method applying original Laplacian mask computation, and we verified that our algorithm has good denoising quality by implementing the algorithm in Android smart phone.

Design of High Performance Robust Vector Quantizer for Wavelet Transformed Image Coding (웨이브렛 변환 영상 부호화용 고성능 범용 벡터양자화기의 설계)

  • Jung, Tae-Yeon;Do, Je-Su
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.2
    • /
    • pp.529-535
    • /
    • 2000
  • In this paper, we propose a new method of designing the vector quantizer which is robustness to coding results and independent of statistical characteristics of an input image in wavelet transformed image coding processes. The most critical drawback of a conventional vector quantizer is the degradation of coding capability resulted from the discordance between quantizer objective image and statistical characteristics of training sequence which is for generating representing vector. In order to resolve the problem of conventional methods, we use independent random-variables and pseudo image to which image correlation and edge component were added, as a training sequence for generating representing vector. We have done a computer simulation in order to compare coding capability between a vector quantizer designed by the proposed method and one with the conventional method using real image as same as that is objective to coding of training sequence used in codebook generation. The results show the superiority of the proposed vector quantizer method at the aspect of coding capability compared to conventional one. They also clarify the problems of conventional methods.

  • PDF

Generating a Stereoscopic Image from a Monoscopic Camera (단안 카메라를 이용한 입체영상 생성)

  • Lee, Dong-Woo;Lee, Kwan-Wook;Kim, Man-Bae
    • Journal of Broadcast Engineering
    • /
    • v.17 no.1
    • /
    • pp.17-25
    • /
    • 2012
  • In this paper, we propose a method of producing a stereoscopic image from multiple images captured from a monoscopic camera. By translating a camera in the horizontal direction, left and right images are chosen among N captured images. For this, image edges are extracted and a rotational angle is estimated from edge orientation. Also, a translational vector is also estimated from the correlation of projected image data. Then, two optimal images are chosen and subsequently compensated using the rotational angle as well as the translational vector in order to make a satisfactory stereoscopic image. The proposed method was performed on thirty-two test image set. The subjective visual fatigue test was carried out to validate the 3D quality of stereoscopic images. In terms of visual fatigue, the 3D satisfaction ratio reached approximately 84%.

GPGPU based Depth Image Enhancement Algorithm (GPGPU 기반의 깊이 영상 화질 개선 기법)

  • Han, Jae-Young;Ko, Jin-Woong;Yoo, Jisang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.12
    • /
    • pp.2927-2936
    • /
    • 2013
  • In this paper, we propose a noise reduction and hole removal algorithm in order to improve the quality of depth images when they are used for creating 3D contents. In the proposed algorithm, the depth image and the corresponding color image are both used. First, an intensity image is generated by converting the RGB color space into the HSI color space. By estimating the difference of distance and depth between reference and neighbor pixels from the depth image and difference of intensity values from the color image, they are used to remove noise in the proposed algorithm. Then, the proposed hole filling method fills the detected holes with the difference of euclidean distance and intensity values between reference and neighbor pixels from the color image. Finally, we apply a parallel structure of GPGPU to the proposed algorithm to speed-up its processing time for real-time applications. The experimental results show that the proposed algorithm performs better than other conventional algorithms. Especially, the proposed algorithm is more effective in reducing edge blurring effect and removing noise and holes.

An Image Watermarking Scheme by Image Fusion in the Wavelet Domain (웨이블릿영역에서 영상융합에 의한 영상 워터마킹 기법)

  • Kim, Dong-Hyun;Choi, In-Ha
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.4
    • /
    • pp.443-453
    • /
    • 2008
  • In this paper, the 1-level DWT(Discrete Wavelet Transform) coefficients of a binary logo image are used as the watermark. The watermark should be inserted in the same band which is equivalent to the host image when the watermark is inserted in the wavelet domain. This is the image fusion of the proposed watermarking method. The watermark is inserted in relatively significant coefficients after the insertion area is defined. The more significant coefficients have the important information because they are identified as the edge and major surface in images. The significant coefficients are defined when their absolute value exceeds the threshold. The standard deviation is used as the weight value of watermark insertion in order to strengthen the weight of the watermark insertion according to the value of the coefficients. The proposed watermarking method is an adaptive scheme, and the proposed two detection algorithms can be adaptively used when the watermarked image is distorted by cropping, filtering, or compression.

  • PDF

Developing Fashion Design Utilizing the Formative Characteristics of Pixelation Image (픽셀화 이미지의 조형 특성을 활용한 패션디자인 개발)

  • Kim, Jinyoung
    • Journal of Fashion Business
    • /
    • v.23 no.4
    • /
    • pp.13-23
    • /
    • 2019
  • This study aims to understand the concept of pixel, the most important factor in constituting a digital image, draw the formative characteristics of pixelation image expressed through non-digital media, and develop fashion design reflecting the characteristics. As a research method, the literature review was conducted in the present study by involving domestic and foreign publications, related academic journals, and theses and dissertations on the pixel and pixelation image based on a qualitative research process. In addition, through an analysis of the cases that borrowed pixelation images in non-digital media like contemporary art and design, etc., an attempt was made to draw the formative characteristics of the pixelation image. Apparently, six fashion design looks are presented in the present study. The formative characteristics of the pixelation image include: first, the repeatability that repeats the minimum unit; second, the incompleteness of the shape appearing through the phenomenon of aliasing due to the characteristics of the pixel; and third, the combination that completes the shape through the combination of individual independent pixels. The results of the expression through reflecting them in fashion design are as follows: first, this study chose one small geometric formative element and presented repeatability by repetitively expressing that element in a textile pattern; second, for incompleteness, this study expressed an incomplete form, handling the edge part of the shape with the method of disentangling the strand; and third, the combination by completing a single look through overlapping of independent textiles and the combination of different independent individuals is expressed.

A Image Search Algorithm using Coefficients of The Cosine Transform (여현변환 계수를 이용한 이미지 탐색 알고리즘)

  • Lee, Seok-Han
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.1
    • /
    • pp.13-21
    • /
    • 2019
  • The content based on image retrieval makes use of features of information within image such as color, texture and share for Retrieval data. we present a novel approach for improving retrieval accuracy based on DCT Filter-Bank. First, we perform DCT on a given image, and generate a Filter-Bank using the DCT coefficients for each color channel. In this step, DC and the limited number of AC coefficients are used. Next, a feature vector is obtained from the histogram of the quantized DC coefficients. Then, AC coefficients in the Filter-Bank are separated into three main groups indicating horizontal, vertical, and diagonal edge directions, respectively, according to their spatial-frequency properties. Each directional group creates its histogram after employing Otsu binarization technique. Finally, we project each histogram on the horizontal and vertical axes, and generate a feature vector for each group. The computed DC and AC feature vectors bins are concatenated, and it is used in the similarity checking procedure. We experimented using 1,000 databases, and as a result, this approach outperformed the old retrieval method which used color information.