• Title/Summary/Keyword: Image Edge

Search Result 2,464, Processing Time 0.031 seconds

Development of Traffic Light Automatic Discrimination System Using Digital Image Processing Technology (디지털영상처리 기술을 이용한 교통신호등 자동 판별 시스템 개발)

  • Kim, Sun-Dong;Baek, Young-Hyun;Moon, Sung-Ryong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.2
    • /
    • pp.92-99
    • /
    • 2009
  • This paper established the range of the wavelength of traffic lights to detection the color of traffic lights and the color component segmentation with the range of the wavelength. Development of traffic light automatic discrimination system is consists of the color detection and the traffic lights recognition. In this thesis, it established the range of the wavelength of traffic lights to detection the color of traffic lights and the color segmentation with the range of the wavelength. By the segmentation, the traffic light colors(red, orange and green) can be detected and the background is changed into gray image. Next, we proposed the algorithm which can detect the area of traffic lights in the various surroundings with the wavelet transformation algorithm. Also, we proposed traffic lights recognition algorithm using between the edge operator and the Hausdorff distance algorithm based on CBIR(Content-based Image retrieval). Therefore, the proposed algorithm is more superior to the conventional algorithm by experimenting with the illumination including the traffic lights and the backgrounds with various images.

Hierarchical Grouping of Line Segments for Building Model Generation (건물 형태 발생을 위한 3차원 선소의 계층적 군집화)

  • Han, Ji-Ho;Park, Dong-Chul;Woo, Dong-Min;Jeong, Tai-Kyeong;Lee, Yun-Sik;Min, Soo-Young
    • Journal of IKEEE
    • /
    • v.16 no.2
    • /
    • pp.95-101
    • /
    • 2012
  • A novel approach for the reconstruction of 3D building model from aerial image data is proposed in this paper. In this approach, a Centroid Neural Network (CNN) with a metric of line segments is proposed for connecting low-level linear structures. After the straight lines are extracted from an edge image using the CNN, rectangular boundaries are then found by using an edge-based grouping approach. In order to avoid producing unrealistic building models from grouping lined segments, a hierarchical grouping method is proposed in this paper. The proposed hierarchical grouping method is evaluated with a set of aerial image data in the experiment. The results show that the proposed method can be successfully applied for the reconstruction of 3D building model from satellite images.

Image Compression using Validity and Zero Coefficients by DCT(Discrete Cosine Transform) (DCT에서 유효계수와 Zero계수를 이용한 영상 압축)

  • Kim, Jang Won;Han, Sang Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.1 no.3
    • /
    • pp.97-103
    • /
    • 2008
  • In this paper, $256{\times}256$ input image is classified into a validity block and an edge block of $8{\times}8$ block for image compression. DCT(Discrete Cosine Transform) is executed only for the DC coefficient that is validity coefficients for a validity block. Predict the position where a quantization coefficient becomes 0 for an edge block, I propose new algorithm to execute DCT in the reduced region. Not only this algorithm that I proposed reduces computational complexity of FDCT(Forward DCT) and IDCT(Inverse DCT) and decreases encoding time and decoding time. I let compressibility increase by accomplishing other stability verticality zigzag scan by the block size that was classified for each block at the time of huffman encoding each. In addition, the algorithm that I suggested reduces Run-Length by accomplishing the level verticality zigzag scan that is good for a classified block characteristic and, I offer the compressibility that improved thereby.

  • PDF

A Study on Image Reconstructing Algorithm in Uniformly Distributed Impulsive Noise Environment (균등 분포된 임펄스 잡음 환경에서의 영상 복원 알고리즘에 관한 연구)

  • Noh Hyun-Yong;Bae Sang-Bum;Kim Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.1001-1004
    • /
    • 2006
  • Many researches have been processed to reconstruct corrupted an image by noise in fields of signal processing such as image recognition and compute. vision, and AWGN(additive white gaussian noise) and impulse noise are representative. Impulse noise consists of fired-valued(salt & pepper) impulse noise and random-valued impulse noise, and non-linear filters such as SM(standard median) filters are used to remove this noise. But basic SM filters still generate many errors in edge regions of an image, and in order to overcome this problem a variety of methods have been researched. In this paper, we proposed an impulse noise removal algorithm which is superior to the edge preserving capacity. At this tine, after detecting a noise by using the noise detector, we applied a noise removal algorithm based on the min-max operation and compared the capacity with existing methods through simulation.

  • PDF

A Classification Algorithm Using Ant Colony System (개미 군락 시스템을 이용한 영역 분류 알고리즘)

  • Kim, In-Kyeom;Yun, Min-Young
    • The KIPS Transactions:PartB
    • /
    • v.15B no.3
    • /
    • pp.245-252
    • /
    • 2008
  • We present a classification algorithm based on ant colony system(ACS) for classifying digital images. The ACS has been recently emerged as a useful tool for the pattern recognition, image extraction, and edge detection. The classification algorithm of digital images is very important in the application areas of digital image coding, image analysis, and image recognition because it significantly influences the quality of images. The conventional procedures usually classify digital images with the fixed value for the associated parameters and it requires postprocessing. However, the proposed algorithm utilizing randomness of ants yields the stable and enhanced images even for processing the rapidly changing images. It is also expected that, due to this stability and flexibility of the present procedure, the digital images are stably classified for processing images with various noises and error signals arising from processing of the drastically fast moving images could be automatically compensated and minimized.

Implementation of a Deep Learning based Realtime Fire Alarm System using a Data Augmentation (데이터 증강 학습 이용한 딥러닝 기반 실시간 화재경보 시스템 구현)

  • Kim, Chi-young;Lee, Hyeon-Su;Lee, Kwang-yeob
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.468-474
    • /
    • 2022
  • In this paper, we propose a method to implement a real-time fire alarm system using deep learning. The deep learning image dataset for fire alarms acquired 1,500 sheets through the Internet. If various images acquired in a daily environment are learned as they are, there is a disadvantage that the learning accuracy is not high. In this paper, we propose a fire image data expansion method to improve learning accuracy. The data augmentation method learned a total of 2,100 sheets by adding 600 pieces of learning data using brightness control, blurring, and flame photo synthesis. The expanded data using the flame image synthesis method had a great influence on the accuracy improvement. A real-time fire detection system is a system that detects fires by applying deep learning to image data and transmits notifications to users. An app was developed to detect fires by analyzing images in real time using a model custom-learned from the YOLO V4 TINY model suitable for the Edge AI system and to inform users of the results. Approximately 10% accuracy improvement can be obtained compared to conventional methods when using the proposed data.

Comparison of a Deep Learning-Based Reconstruction Algorithm with Filtered Back Projection and Iterative Reconstruction Algorithms for Pediatric Abdominopelvic CT

  • Wookon Son;MinWoo Kim;Jae-Yeon Hwang;Young-Woo Kim;Chankue Park;Ki Seok Choo;Tae Un Kim;Joo Yeon Jang
    • Korean Journal of Radiology
    • /
    • v.23 no.7
    • /
    • pp.752-762
    • /
    • 2022
  • Objective: To compare a deep learning-based reconstruction (DLR) algorithm for pediatric abdominopelvic computed tomography (CT) with filtered back projection (FBP) and iterative reconstruction (IR) algorithms. Materials and Methods: Post-contrast abdominopelvic CT scans obtained from 120 pediatric patients (mean age ± standard deviation, 8.7 ± 5.2 years; 60 males) between May 2020 and October 2020 were evaluated in this retrospective study. Images were reconstructed using FBP, a hybrid IR algorithm (ASiR-V) with blending factors of 50% and 100% (AV50 and AV100, respectively), and a DLR algorithm (TrueFidelity) with three strength levels (low, medium, and high). Noise power spectrum (NPS) and edge rise distance (ERD) were used to evaluate noise characteristics and spatial resolution, respectively. Image noise, edge definition, overall image quality, lesion detectability and conspicuity, and artifacts were qualitatively scored by two pediatric radiologists, and the scores of the two reviewers were averaged. A repeated-measures analysis of variance followed by the Bonferroni post-hoc test was used to compare NPS and ERD among the six reconstruction methods. The Friedman rank sum test followed by the Nemenyi-Wilcoxon-Wilcox all-pairs test was used to compare the results of the qualitative visual analysis among the six reconstruction methods. Results: The NPS noise magnitude of AV100 was significantly lower than that of the DLR, whereas the NPS peak of AV100 was significantly higher than that of the high- and medium-strength DLR (p < 0.001). The NPS average spatial frequencies were higher for DLR than for ASiR-V (p < 0.001). ERD was shorter with DLR than with ASiR-V and FBP (p < 0.001). Qualitative visual analysis revealed better overall image quality with high-strength DLR than with ASiR-V (p < 0.001). Conclusion: For pediatric abdominopelvic CT, the DLR algorithm may provide improved noise characteristics and better spatial resolution than the hybrid IR algorithm.

경계 위치 정보를 이용한 화상 분할

  • 최우영;박래홍;이상욱
    • Proceedings of the Korean Institute of Communication Sciences Conference
    • /
    • 1987.04a
    • /
    • pp.49-51
    • /
    • 1987
  • In this paper we propose a segmentiation algorithm to get binary images by using edge positional information We use the global and local properties of an image in this algorithm. Computer simulation shows that its segmentation results are better than thyose of conventional algorthm using only global characteristics.

  • PDF