Scoliosis is a three-dimensional deformation of the spine that is a deformity induced by physical or disease-related causes as the spine is rotated abnormally. Early detection has a significant influence on the possibility of nonsurgical treatment. To train a deep learning model with preprocessed images and to evaluate the results with and without data augmentation to enable the diagnosis of scoliosis based only on a chest X-ray image. The preprocessed images in which only the spine, rib contours, and some hard tissues were left from the original chest image, were used for learning along with the original images, and three CNN(Convolutional Neural Networks) models (VGG16, ResNet152, and EfficientNet) were selected to proceed with training. The results obtained by training with the preprocessed images showed a superior accuracy to those obtained by training with the original image. When the scoliosis image was added through data augmentation, the accuracy was further improved, ultimately achieving a classification accuracy of 93.56% with the ResNet152 model using test data. Through supplementation with future research, the method proposed herein is expected to allow the early diagnosis of scoliosis as well as cost reduction by reducing the burden of additional radiographic imaging for disease detection.
In this paper, it was tried to find out the minimum measurement range in the diagnosis of insulators using thermal image camera, for the purpose, leakage currents and thermal images were observed simultaneously for the insulators of which surface had been artificially polluted by salt fog. As a result. the surface temperature was increased with leakage currents. Also, the results of AC breakdown tests for the insulator of which temperature rise was more than 1 $^{\circ}C$ showed to be bad. Therefore, through the study on the relationship between leakage current, temperature rise and AC breakdown voltages, the diagnosis of the insulator in site would be possible using the thermal image camera.
Cracks may occur in reinforced concrete (RC) structures due to various physical and chemical factors, and the growth of cracks causes deterioration of the structure's performance. It is important to prevent the expansion of cracks through periodic diagnosis of cracks in structures. In order to enable free crack exploration even in a narrow space, a construction robot using a Mecanum wheel that can move up, down, left and right and rotate in place was designed. High-quality crack images were periodically collected through the camera, and the image fragments stored during the exploration were combined into a single photo after the exploration was completed. The robot detected cracks with a width of 0.2 mm or more on the concrete probe surface with an accuracy of about 90% or more.
In this paper, we introduce a pre-training method leveraging the capabilities of the Vision Transformer (ViT) for disease diagnosis in conventional Fundus images. Recognizing the need for effective representation learning in medical images, our method combines the Vision Transformer with a Masked Autoencoder to generate meaningful and pertinent image augmentations. During pre-training, the Masked Autoencoder produces an altered version of the original image, which serves as a positive pair. The Vision Transformer then employs contrastive learning techniques with this image pair to refine its weight parameters. Our experiments demonstrate that this dual-model approach harnesses the strengths of both the ViT and the Masked Autoencoder, resulting in robust and clinically relevant feature embeddings. Preliminary results suggest significant improvements in diagnostic accuracy, underscoring the potential of our methodology in enhancing automated disease diagnosis in fundus imaging.
본 논문에서는 한방 의료의 설진에서 진단 지표로 활용될 수 있는 효과적인 설태 영역 추출 방법을 제안한다. 제안한 방법은 설태의 자외선 광원에 의한 형광 반응 특성을 이용하여 기존의 설태 추출 방법의 단점으로 지적되었던 진료 환경의 제약성 및 진료 결과의 객관성 부족에 대한 문제점을 해결할 수 있다. 처리 과정으로는 자외선 광원을 사용하여 설진 영상을 획득하고, 설질(Tongue body)과 설태(Tongue coating) 영역의 색차 크기에 상응하는 히스토그램(Histogram) 상의 골-포인트(Valley-points)를 임계 처리하여 이진화(Binarization)를 수행한다. 최종적으로 설진을 위하여 한의사에게 제공되는 진단 영상은 이진 영상에 케니-에지(Canny-Edge) 알고리즘을 사용하여 설태 윤곽 정보를 추출한 후에 환자의 원 혀 영상에 부과하여 제시한다. 제안한 방법의 성능 평가를 위해서는 다양한 혀 영상을 수집하고, 한의사가 수작업으로 설정한 설태 영역을 참영상(True image)으로 하여 제안한 방법으로 추출한 설태 영역과 비교하였다. 그 결과 제안한 방법은 87.87%의 추출률을 나타냈으며, 추출된 설태 영역의 형태 유사도도 높게 나타났다.
Modern production systems are very complex by request of automation, and failure modes that occur in thisautomatic system are very various and complex. The efficient fault diagnosis for these complex systems is essential for productivity loss prevention and cost saving. Traditional fault diagnostic system which perforns sequential fault diagnosis can cause catastrophic failure during diagnosis when fault propagation is very fast. This paper describes the Real-time Intelligent Multiple Fault Diagnosis System (RIMFDS). RIMFDS assesses current machine condition by using sensor signals. This system deals with multiple fault diagnosis, comprising of two main parts. One is a personal computer for remote signal generation and transmission and the other is a host system for multiple fault diagnosis. The signal generator generates various faulty signals and image information and sends them to the host. The host has various modules and agents for efficient multiple fault diagnosis. A SUN workstation is used as a host for multiple fault modules and agents for efficient multiple fault diagnosis. A SUN workstation is used as a host for multiple fault diagnosis and graphic representation of the results. RIMFDS diagnoses multiple faults with fast fault propagation and complex physical phenomenon. The new system based on multiprocessing diagnoses by using Hierarchical Artificial Neural Network (HANN).
The status and the property of a tongue are the important indicators to diagnose one's health like physiological and clinicopathological changes of inner organs. However, the tongue diagnosis is affected by examination circumstances like a light source, patient's posture, and doctor's condition. To develop an automatic tongue diagnosis system for an objective and standardized diagnosis, classifying tongue coating is inevitable but difficult since the features like color and texture of the tongue coatings and substance have little difference, especially in the neighborhood on the tongue surface. The proposed method has two procedures; the first is to acquire the color table to classify tongue coatings and substance by automatically separating coating regions marked by oriental medical doctors, decomposing the color components of the region into hue, saturation and brightness and obtaining the 2nd order discriminant with statistical data of hue and saturation corresponding to each kind of tongue coatings, and the other is to apply the tongue region in an input image to the color table, resulting in separating the regions of tongue coatings and classifying them automatically. As a result, kinds of tongue coatings and substance were segmented from a face image corresponding to regions marked by oriental medical doctors and the color table for classification took hue and saturation values as inputs and produced the classification of the values into white coating, yellow coating and substance in a digital tongue diagnosis system. The coating regions classified by the proposed method were almost the same to the marked regions. The exactness of classification was 83%, which is the degree of correspondence between what Oriental medical doctors diagnosed and what the proposed method classified. Since the classified regions provide effective information, the proposed method can be used to make an objective and standardized diagnosis and applied to an ubiquitous healthcare system. Therefore, the method will be able to be widely used in Oriental medicine.
The tongue diagnosis is a diagnostic method in the oriental medicine that uses shape, substance, coating, and movement of the tongue to determine the condition of health and disease characteristics in human. Since this information, however, could be affected by subjective sense and visual information, it is difficult to obtain the objective and reproducible results. This research aims at building a reproducible tongue diagnosis system using color chart that is attached close to the face contact region. The picture of color chart is taken simultaneously with a tongue and applied to color revision. The system, in addition, is focused on providing a clear tongue image through securing a sufficient photographing distance with a surface coating mirror. The lightning part which can suppress the reflection by sputum in maximum is implemented for the objectification and quantification of the tongue diagnosis system. The face contact region is designed for consideration of a testee's convenience. To evaluate the reproducibility of the system, the CVs (coefficient of variance, %) of $L{\ast}$, $a{\ast}$ and $b{\ast}$ of red, green and blue regions in color chart are calculated, respectively. The results of all CVs shows that the tongue diagnosis system is re liable and those consequences contribute to the objectification and quantification of the tongue diagnosis system.
In order to diagnose and prevent Alzheimer's Disease (AD), it is becoming increasingly important to develop a CAD(Computer-aided Diagnosis) system for AD diagnosis, which provides effective treatment for patients by analyzing 3D MRI images. It is essential to apply powerful deep learning algorithms in order to automatically classify stages of Alzheimer's Disease and to develop a Alzheimer's Disease support diagnosis system that has the function of detecting hippocampus and CSF(Cerebrospinal fluid) which are important biomarkers in diagnosis of Alzheimer's Disease. In this paper, for AD diagnosis, we classify a given MRI data into three categories of AD, mild cognitive impairment, and normal control according by applying 3D brain MRI image to the Faster R-CNN model and detect hippocampus and CSF in MRI image. To do this, we use the 2D MRI slice images extracted from the 3D MRI data of the Faster R-CNN, and perform the widely used majority voting algorithm on the resulting bounding box labels for classification. To verify the proposed method, we used the public ADNI data set, which is the standard brain MRI database. Experimental results show that the proposed method achieves impressive classification performance compared with other state-of-the-art methods.
Purpose: This study was to identify predictors of sexual function in gynecologic cancer patients. Methods: The participants were 154 patients treated at a university medical center in A city, Korea. The data collection was performed through a structured questionnaire from July to December, 2010. The instruments used in this study were Female Sexual Function Index (FSFI) perceived health status scale, Eastern Cooperative Oncology Group (ECOG) performance status, body image, and depression. Data were analyzed using descriptive statistics, Mann-Whitney test, Kruskal-Wallis test and stepwise multiple regression with the SPSS 18.0. Results: The mean score of perceived health status was 8.42 and sexual function was 8.42. The lowest score among sexual function was lubrication. The scores of sexual function was significantly different by age, job, marital status, period after diagnosis of cancer and diagnosis. There were significant correlations between sexual function, perceived health status, ECOG performance, body image and depression. In multiple regression analysis, predictors were identified as ECOG performance, age, diagnosis and period after diagnosis of cancer (Adj.$R^2$=.28). The most powerful predictor of female sexual function was ECOG performance (19.0%). Conclusion: The above findings indicate that it is necessary to develop a more effective and personalized sexual function improvement program for gynecologic cancer patient.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.