• Title/Summary/Keyword: Image Compression/Reconstruction

Search Result 83, Processing Time 0.022 seconds

An Enhanced Wavelet Packet Image Coder Using Coefficients Partitioning (계수분할을 이용한 개선된 워이블릿 패킷 영상 부호화 알고리듬)

  • 한수영;김홍렬;이기희
    • Journal of the Korea Society of Computer and Information
    • /
    • v.7 no.1
    • /
    • pp.112-119
    • /
    • 2002
  • We propose an enhanced wavelet packet image coder algorithm which is based on the coefficients partition. The proposed wavelet packet image coder uses the first-order entropy to reduce the total compression time, and achieves low bit rates and rate-distortion performance by the zero-tree based coding using correlations between coefficients partition. This new algorithm represents new parent-children relationships for reducing image reconstruction error using the correlations between each frequency subbands and then the wavelet packet coefficients are Partitioned by a new order. The computer simulations demonstrate higher PSNR under the same bit rate and improved image compression time and enhanced rate control compare with conventional algorithms. From the simulation results, it is shown that the encoding and decoding process of proposed coder are much simple and accurate than present method against texture images , which include many mid-frequency elements.

  • PDF

Quantized CNN-based Super-Resolution Method for Compressed Image Reconstruction (압축된 영상 복원을 위한 양자화된 CNN 기반 초해상화 기법)

  • Kim, Yongwoo;Lee, Jonghwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.71-76
    • /
    • 2020
  • In this paper, we propose a super-resolution method that reconstructs compressed low-resolution images into high-resolution images. We propose a CNN model with a small number of parameters, and even if quantization is applied to the proposed model, super-resolution can be implemented without deteriorating the image quality. To further improve the quality of the compressed low-resolution image, a new degradation model was proposed instead of the existing bicubic degradation model. The proposed degradation model is used only in the training process and can be applied by changing only the parameter values to the original CNN model. In the super-resolution image applying the proposed degradation model, visual artifacts caused by image compression were effectively removed. As a result, our proposed method generates higher PSNR values at compressed images and shows better visual quality, compared to conventional CNN-based SR methods.

A Resolution-Scalable Data Compression Method of a Digital Hologram (디지털 홀로그램의 해상도-스케일러블 데이터 압축 방법)

  • Kim, Yoonjoo;Seo, Young-Ho;Kim, Dong-Wook
    • Journal of Broadcast Engineering
    • /
    • v.19 no.2
    • /
    • pp.174-183
    • /
    • 2014
  • This paper is to propose a scalable video coding scheme for adaptive digital hologram video service for various reconstruction environments. It uses both the light source information and digital hologram at both the sending side and the receiving side. It is a resolution-scalable coding method that scales the resolution, that is, the size of the reconstructed image. The method compresses the residual data for both the digital hologram and the light source information. For the digital hologram, a lossy compression method is used, while for the light source information, a lossless compression method is used. The experimental results showed that the proposed method is superior to the existing method in the image quality at the same compression ratio. Especially it showed better performance than the existing method as the compression ratio becomes higher.

A Progressive DCT Image Coding by Non-sequential Bit Ordering (비순차적 비트 정렬에 의한 점진적인 DCT 영상 부호화)

  • 김종훈;채종길;심영석
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.3
    • /
    • pp.69-79
    • /
    • 1994
  • DCT image coding has been well known for its compression efficiency. Its nature makes it also suitable for efficient progressive transmission and reconstruction since low frequency transform coefficients contain most of the energy of image signals. In this paper, we propose a progressive transmission technique of DCT image by non-sequential bit ordering using Lloyd-Max quantizer. And then, we will show that the Lloyd-Max quantizer can be embedded quantization. In simulation results, the proposed method show better subjective picture and MSE of the reconstructed image than the conventional zig-zag scanning transmission of transform coefficients.

  • PDF

A FRINGE CHARACTER ANALYSIS OF FRINGE IMAGE (Fringe 영상의 주파수 특성 분석)

  • Seo Young-Ho;Choi Hyun-Jun;Kim Dong-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.11C
    • /
    • pp.1053-1059
    • /
    • 2005
  • The computer generated hologram (CGH) designs and produces digital information for generating 3-D (3-Dimension) image using computer and software instead of optically-sensed hologram of light interference, and it can synthesis a virtual object which is physically not in existence. Since digital hologram includes an amount of data as can be seen at the process of digitization, it is necessary that the data representing digital hologram is reduced for storing, transmission, and processing. As the efforts that are to handle hologram with a type of digital information have been increased, various methods to compress digital hologram called by fringe pattern are groped. Suitable proposal is encoding of hologram. In this paper, we analyzed the properties of CGH using tools of frequency transform, assuming that a generated CGH is a 2D image by introducing DWT that is known as the better tool than DCT for frequency transform. The compression and reconstruction result which was extracted from the wavelet-based codecs illustrates that it has better properties for reconstruction at the maximum 2 times higher compression rate than the Previous researches of Yoshikawa[2] and Thomas[3].

Wavelet Packet Image Coder for Digital Contents Using Coefficients Partition Scan Order (계수분할을 이용한 디지털 컨텐츠의 웨이블릿 패킷 영상압축)

  • 한수영;이두수
    • Journal of the Korea Society of Computer and Information
    • /
    • v.8 no.3
    • /
    • pp.47-52
    • /
    • 2003
  • In this paper. a new wavelet packet image coder is proposed for images that include many high-frequency components using the relation between subbands. The new algorithm presents parent-child relationship for reducing image reconstruction error using relations between individual frequency subbands. By parent-child relationship, every coefficient is partitioned and encoded for the zerotree structure. It demonstrates higher PSNR under the same bit rate. These results show that the encoding process of the proposed coder is more accurate than the conventional ones for images that include many high-frequency elements.

  • PDF

An Optimized GPU based Filtered Backprojection method (범용 그래픽스 하드웨어 기반 여과후 역투사 최적화 기법에 관한 연구)

  • Park, Jong-Hyun;Lee, Byeong-Hun;Lee, Ho;Shin, Yeong-Gil
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.436-442
    • /
    • 2009
  • Tomography images reconstructed from conebeam CT make it possible to observe inside of the projected object without any damage, and so it has been widely used in the industrial and medical fields. Recent advanced imaging equipment can produce high-resolution CT images. However, it takes much time to reconstruct the obtained large dataset. To reduce the time to reconstruct CT images, we propose an accelerating method using GPU (graphics processing unit). Reconstruction consists of mainly two parts, filtering and back-projection. In filtering phase, we applied 4ch image compression method and in back-projection phase, computation reduction method using depth test is applied. The experimental results show that the proposed method accelerates the speed 50 times than the CPU-based program optimized with OpenMP by utilizing the high-computing power of parallelized GPU.

  • PDF

VLSI Design of DWT-based Image Processor for Real-Time Image Compression and Reconstruction System (실시간 영상압축과 복원시스템을 위한 DWT기반의 영상처리 프로세서의 VLSI 설계)

  • Seo, Young-Ho;Kim, Dong-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.1C
    • /
    • pp.102-110
    • /
    • 2004
  • In this paper, we propose a VLSI structure of real-time image compression and reconstruction processor using 2-D discrete wavelet transform and implement into a hardware which use minimal hardware resource using ASIC library. In the implemented hardware, Data path part consists of the DWT kernel for the wavelet transform and inverse transform, quantizer/dequantizer, the huffman encoder/huffman decoder, the adder/buffer for the inverse wavelet transform, and the interface modules for input/output. Control part consists of the programming register, the controller which decodes the instructions and generates the control signals, and the status register for indicating the internal state into the external of circuit. According to the programming condition, the designed circuit has the various selective output formats which are wavelet coefficient, quantization coefficient or index, and Huffman code in image compression mode, and Huffman decoding result, reconstructed quantization coefficient, and reconstructed wavelet coefficient in image reconstructed mode. The programming register has 16 stages and one instruction can be used for a horizontal(or vertical) filtering in a level. Since each register automatically operated in the right order, 4-level discrete wavelet transform can be executed by a programming. We synthesized the designed circuit with synthesis library of Hynix 0.35um CMOS fabrication using the synthesis tool, Synopsys and extracted the gate-level netlist. From the netlist, timing information was extracted using Vela tool. We executed the timing simulation with the extracted netlist and timing information using NC-Verilog tool. Also PNR and layout process was executed using Apollo tool. The Implemented hardware has about 50,000 gate sizes and stably operates in 80MHz clock frequency.

Side Information Extrapolation Using Motion-aligned Auto Regressive Model for Compressed Sensing based Wyner-Ziv Codec

  • Li, Ran;Gan, Zongliang;Cui, Ziguan;Wu, Minghu;Zhu, Xiuchang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.2
    • /
    • pp.366-385
    • /
    • 2013
  • In this paper, we propose a compressed sensing (CS) based Wyner-Ziv (WZ) codec using motion-aligned auto regressive model (MAAR) based side information (SI) extrapolation to improve the compression performance of low-delay distributed video coding (DVC). In the CS based WZ codec, the WZ frame is divided into small blocks and CS measurements of each block are acquired at the encoder, and a specific CS reconstruction algorithm is proposed to correct errors in the SI using CS measurements at the decoder. In order to generate high quality SI, a MAAR model is introduced to improve the inaccurate motion field in auto regressive (AR) model, and the Tikhonov regularization on MAAR coefficients and overlapped block based interpolation are performed to reduce block effects and errors from over-fitting. Simulation experiments show that our proposed CS based WZ codec associated with MAAR based SI generation achieves better results compared to other SI extrapolation methods.

Computer generated hologram compression using video coding techniques (비디오 코딩 기술을 이용한 컴퓨터 형성 홀로그램 압축)

  • Lee, Seung-Hyun;Park, Min-Sun
    • Journal of the Korea Computer Industry Society
    • /
    • v.6 no.5
    • /
    • pp.767-774
    • /
    • 2005
  • In this paper, we propose an efficient coding method of digital hologram using standard compression tools for video images. At first, we convert fringe patterns into video data using a principle of CGH(Computer Generated Hologram), and then encode it. In this research, we propose a compression algorithm is made up of various method such as pre-processing for transform, local segmentation with global information of object image, frequency transform for coding, scanning to make fringe to video stream, classification of coefficients, and hybrid video coding. The proposed algorithm illustrated that it have better properties for reconstruction and compression rate than the previous methods.

  • PDF