• 제목/요약/키워드: Image Clustering

검색결과 601건 처리시간 0.024초

자동차 추돌경보 시스템 개발을 위한 컴퓨터 비젼과 레이저 레이다의 응용 (An Application of Computer Vision and Laser Radar to a Collision Warning System)

  • 이준웅
    • 한국자동차공학회논문집
    • /
    • 제7권5호
    • /
    • pp.258-267
    • /
    • 1999
  • An intelligent safety vehicle(ISV) should have an ability to predict the possibility of an accident and help a driver avoid the accident in advance. The basic function of the ISV is to alert the driver by warning when the collision is to occur. For this purpose, the ISV has to function efficiently in sensing the environmental context. While image processing provides lane information, laser radar senses road obstacles including vehicles. By applying a simple clustering algorithm to radar signals, it is possible to obtain the vehicle information. Consequently, we can identify the existence of the vehicle of interest on my lane. The reliability of the sensing algorithm is evaluated by running on the highway with a test vehicle.

  • PDF

Time-Resolved Photoluminescence Measurement of Frenkel-type Excitonic Lifetimes in InGaN/GaN Multi-quantum Well Structures

  • Kim, Keun-Joo
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 제5회 영호남 학술대회 논문집
    • /
    • pp.121-125
    • /
    • 2003
  • Time-resolved photoluminescence from InGaN/GaN multi-quantum well structures was investigated for two different shapes of square- and trapezoidal wells grown by metal-organic chemical vapor deposition. To compare to the conventional square well structure with a radiative recombination lifetime of 0.170 nsec, the large value of lifetime of 0.540 nsec from trapezoidal well were found at room temperature. This value is similar to the value for GaN host material indicating no confinement effect of quantum well. Furthermore, the high resolution transmission electron microscopy image provides the In clustering effect in the trapezoidal well structure.

  • PDF

움직이는 데이터 그림 (Moving Data Pictures)

  • 허명회
    • 응용통계연구
    • /
    • 제26권6호
    • /
    • pp.999-1007
    • /
    • 2013
  • 이 연구는 다음 몇 가지 경우에 적용 가능한 '움직이는 데이터 그림(moving data pictures)'을 제안 한다: 1) 한국어 텍스트의 단어 구름(word cloud), 2) n ${\times}$ p 행렬의 시각화(matrix visualization), 3) p ${\times}$ p 산점도 행렬의 동영상 버전, 4) k개 개체 군집의 동적 시각화 등. 이들 기법은 데이터에 내재된 숨은 정보와 시각적 아름다움을 드러내고 정보 소비자들의 흥미를 점화할 수 있다.

뉴스 클러스터링 개선을 위한 문서 임베딩 및 이미지 분석 자질의 활용 (Document Embedding and Image Content Analysis for Improving News Clustering System)

  • 김시연;김상범
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2015년도 제27회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.104-108
    • /
    • 2015
  • 많은 양의 뉴스가 생성됨에 따라 이를 효과적으로 정리하는 기법이 최근 활발히 연구되어왔다. 그 중 뉴스클러스터링은 두 뉴스가 동일사건을 다루는지를 판정하는 분류기의 성능에 의존적인데, 대부분의 경우 BoW(Bag-of-Words)기반 벡터유사도를 사용하고 있다. 본 논문에서는 BoW기반의 벡터유사도 뿐 아니라 두 문서에 포함된 사진들의 유사성 및 주제의 관련성을 측정, 이를 분류기의 자질로 추가하여 두 뉴스가 동일사건을 다루는지 판정하는 분류기의 성능을 개선하는 방법을 제안한다. 사진들의 유사성 및 주제의 관련성은 최근 각광을 받는 딥러닝기반 CNN과 신경망기반 문서임베딩을 통해 측정하였다. 실험결과 기존의 BoW기반 벡터유사도에 의한 분류기의 성능에 비해 제안하는 두 자질을 사용하였을 경우 3.4%의 성능 향상을 보여주었다.

  • PDF

FCM을 이용한 지식기반 데이터베이스 검색 시스템의 구축 (Building of Database Retrieval System Based on Knowledge using FCM)

  • 박계각;서기열;천대일;양원재
    • 한국지능시스템학회논문지
    • /
    • 제11권1호
    • /
    • pp.88-93
    • /
    • 2001
  • 기존의 데이터베이스 검색시스템은 사용자의 검색 조건에 정확히 일치하는 데이터가 데이터베이스 내에 존재할 경우에만 사용자에게 해당 데이터를 제공할 수 있고, 사용자의 검색조건을 정확히 만족하는 데이터가 없을 경우에는 적절한 데이터를 제공할 수 없는 문제점이 있다. 이러한 문제를 해결하기 위하여 본 논문에서는 FCM의 클러스터증가 및 재초기화 알고리즘을 제안하였고, FCM을 이용하여 데이터베이스 내의 데이터로부터 구축된 지식기반 데이터베이스(KDB)와 구축된 이미지 데이터베이스와 연동을 통하여 사용자의 요구에 가장 근접한 데이터를 제시해 주는 검색시스템을 제안하였다. 본 연구에서 제안된 수법을 우체국의 우편주문안내책자를 이용한 선물고르기 DB 검색 시스템에 적용하여 그 유효성을 확인하였다.

  • PDF

Time-Resolved Photoluminescence Measurement of Frenkel-type Excitonic Lifetimes in InGaN/GaN Multi-quantum Well Structures

  • Shin, Gwi-Su;Hwang, Sung-Won;Kim, Keun-Joo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제4권5호
    • /
    • pp.19-23
    • /
    • 2003
  • Time-resolved photoluminescence from InGaN/GaN multi-quantum well structures was investigated for two different shapes of square-and trapezoidal wells grown by metal-organic chemical vapor deposition. To compare to the conventional square well structure with a radiative recombination lifetime of 0.170 nsec, the large value of lifetime of 0.540 nsec from trapezoidal well were found at room temperature. This value is similar to the value for GaN host material indicating no confinement effect of quantum well. Furthermore, the high resolution transmission electron microscopy image provides the In clustering effect in the trapezoidal well structure.

칼라 군집화 및 비등방성확산필터를 이용한 저해상도 영상에서의 숫자열 인식 (Recognition of Digit String from Low Resolution Image by using Color Clustering and Anisotropic Diffusion)

  • 박현일;김수형
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2004년도 추계학술발표논문집(상)
    • /
    • pp.839-842
    • /
    • 2004
  • 자연영상에서 문자를 인식하는 연구는 활발히 진행되고 있지만 대부분 디지털 카메라나 캠코더 등으로 획득한 고해상도의 영상에서의 연구에 국한되어 있다. 휴대폰 카메라로 획득된 저해상도의 영상은 아주 적은 수의 픽셀로 정보를 표현하기 때문에 기존의 이진화 알고리즘으로는 문자와 배경을 깨끗하게 분리해 낼 수 없다. 본 논문은 영상의 칼라정보를 K-Means 클러스터링을 이용하여 전경과 배경으로 이진화 하였으며, 이진화 성능을 향상시키기 위해 지능형 주파수 필터와 비등방성 확산 필터를 사용하였다. 또한 입력영상을 파이프라인 구조의 이진화 및 인식 시스템에 인식시킴으로써 인식성능을 향상시켰다.

  • PDF

적응적 퍼지 클러스터링 알고리듬을 이용한 영상 대비 향상 기법 (An Image Contrast Enhancement Technique Using an Adaptive Fuzzy Clustering Algorithm)

  • 이금분;김용수
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2001년도 추계학술발표논문집 (상)
    • /
    • pp.527-530
    • /
    • 2001
  • 영상이 시각적인 해석을 위해 처리될 때, 퍼지 이론이 영상 대비 강화에 많이 사용되고 있다. 적응적 퍼지 클러스터링 기법을 사용하여 자동적으로 영상의 명암도에 대한 다중 클래스를 형성하고 여기에 각각의 명암도를 속성 공간으로 전환시키는 퍼지함수를 사용하여 각 픽셀의 명암도에 부합하는 퍼지 소속도를 구한다. 영상 대비 향상을 위하여 구한 퍼지 소속도에 강화 연산자를 반복적 적용한다. 본 논문에서 제안한 방법을 히스토그램 평활화와 비교하기 위해 흑백 영상에 적용하였다.

  • PDF

크래시된 이미지와 딥 클러스터링을 통한 크래시 분류 개선 (Improving crash classification with crash image and deep clustering)

  • 김요한;이상준
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 추계학술발표대회
    • /
    • pp.809-812
    • /
    • 2019
  • 소프트웨어 크래시 분류를 개선하기 위해 호출 스택 정보를 기반한 많은 연구들이 있다. 본 연구에서는 크래시 직전 이미지를 수집하여, 기존 호출 스택 기반의 분류에서 발생하는 문제를 개선하고자 한다. 또한 이미지 자체의 직관성으로 개발자뿐만 아니라 개발 지식이 없는 실무자도 크래시 정보를 활용할 수 있고, 문제 해결을 위한 재현 루트 파악, 위변조 여부와 같은 추가 정보를 확인할 수 있을 것으로 기대한다. 비지도 학습 기반인 딥러닝 클러스터링 N2D 알고리즘을 통하여 이미지를 자동 분류하고 순위화하는 시스템을 구축하여, 특정 소프트웨어에 특화되지 않고 다양한 소프트웨어의 크래시 이미지 자동 분류에 기여할 수 있을 것으로 기대한다.

텍스쳐 방향특징에 의한 비교사 텍스쳐 영상 분할 (Unsupervised Texture Image Segmentation with Textural Orientation Feature)

  • 이우범;김욱현
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2000년도 하계종합학술대회논문집
    • /
    • pp.325-328
    • /
    • 2000
  • 텍스쳐 분석은 장면 분할, 물체 인식, 모양과 깊이 인식 등의 많은 영상 처리 분야에서 중요한 기술 중의 하나이다. 그러나 실영상에 포함된 다양한 텍스쳐 성분에 대해서 보편적으로 적용 가능한 효율적인 방법들에 대한 연구는 미흡한 실정이다. 본 논문에서는 텍스쳐 인식을 위해서 비교사 학습 방법에 기반 한 효율적인 텍스쳐 분석 기법을 제안한다. 제안된 방법은 텍스쳐 영상이 지닌 방향특징 정보로서 각(angle)과 강도(power)를 추출하여 자기 조직화 신경회로망에 의해서 블록기반으로 군집화(clustering)된다. 비교사적 군집 결과는 통합(merging)과 불림(dilation) 과정을 통해서 영상에 내재된 텍스쳐 성분의 분할을 수행한다. 제안된 시스템의 성능 평가를 위해서는 다양한 형태의 다중 텍스쳐 영상을 생성하여 적용한 후 그 유효성을 보인다.

  • PDF