• Title/Summary/Keyword: Image Classification Model

Search Result 707, Processing Time 0.03 seconds

전투기용 레이다 기반 SAR 영상 자동표적분류 기능 구조 및 CNN 앙상블 모델을 이용한 표적분류 정확도 향상 방안 연구 (Study on the Functional Architecture and Improvement Accuracy for Auto Target Classification on the SAR Image by using CNN Ensemble Model based on the Radar System for the Fighter)

  • 임동주;송세리;박범
    • 시스템엔지니어링학술지
    • /
    • 제16권1호
    • /
    • pp.51-57
    • /
    • 2020
  • The fighter pilot uses radar mounted on the fighter to obtain high-resolution SAR (Synthetic Aperture Radar) images for a specific area of distance, and then the pilot visually classifies targets within the image. However, the target configuration captured in the SAR image is relatively small in size, and distortion of that type occurs depending on the depression angle, making it difficult for pilot to classify the type of target. Also, being present with various types of clutters, there should be errors in target classification and pilots should be even worse if tasks such as navigation and situational awareness are carried out simultaneously. In this paper, the concept of operation and functional structure of radar system for fighter jets were presented to transfer the SAR image target classification task of fighter pilots to radar system, and the method of target classification with high accuracy was studied using the CNN ensemble model to archive higher classification accuracy than single CNN model.

이미지 보간을 위한 의사결정나무 분류 기법의 적용 및 구현 (Adopting and Implementation of Decision Tree Classification Method for Image Interpolation)

  • 김동형
    • 디지털산업정보학회논문지
    • /
    • 제16권1호
    • /
    • pp.55-65
    • /
    • 2020
  • With the development of display hardware, image interpolation techniques have been used in various fields such as image zooming and medical imaging. Traditional image interpolation methods, such as bi-linear interpolation, bi-cubic interpolation and edge direction-based interpolation, perform interpolation in the spatial domain. Recently, interpolation techniques in the discrete cosine transform or wavelet domain are also proposed. Using these various existing interpolation methods and machine learning, we propose decision tree classification-based image interpolation methods. In other words, this paper is about the method of adaptively applying various existing interpolation methods, not the interpolation method itself. To obtain the decision model, we used Weka's J48 library with the C4.5 decision tree algorithm. The proposed method first constructs attribute set and select classes that means interpolation methods for classification model. And after training, interpolation is performed using different interpolation methods according to attributes characteristics. Simulation results show that the proposed method yields reasonable performance.

다중 클래스 이미지 표정 분류 (Multiclass image expression classification)

  • 오명호;민송하;김종민
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.701-703
    • /
    • 2022
  • 본 논문에서는 지도 학습에 기반을 둔 다중 클래스 이미지 장면 분류 방법을 제시한다. 데이터 세트에서 콘볼루션 뉴런 네트워크 모델에 학습시켜 다중 클래스 사람의 표정 장면 이미지를 분류하였으며, 실험에서는 최적화된 CNN 모델을 Google image 데이터 세트에 분류하여 유의미한 결과를 얻을 수 있었다.

  • PDF

Deep Adversarial Residual Convolutional Neural Network for Image Generation and Classification

  • Haque, Md Foysal;Kang, Dae-Seong
    • 한국정보기술학회 영문논문지
    • /
    • 제10권1호
    • /
    • pp.111-120
    • /
    • 2020
  • Generative adversarial networks (GANs) achieved impressive performance on image generation and visual classification applications. However, adversarial networks meet difficulties in combining the generative model and unstable training process. To overcome the problem, we combined the deep residual network with upsampling convolutional layers to construct the generative network. Moreover, the study shows that image generation and classification performance become more prominent when the residual layers include on the generator. The proposed network empirically shows that the ability to generate images with higher visual accuracy provided certain amounts of additional complexity using proper regularization techniques. Experimental evaluation shows that the proposed method is superior to image generation and classification tasks.

SHADOW EXTRACTION FROM ASTER IMAGE USING MIXED PIXEL ANALYSIS

  • Kikuchi, Yuki;Takeshi, Miyata;Masataka, Takagi
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.727-731
    • /
    • 2003
  • ASTER image has some advantages for classification such as 15 spectral bands and 15m ${\sim}$ 90m spatial resolution. However, in the classification using general remote sensing image, shadow areas are often classified into water area. It is very difficult to divide shadow and water. Because reflectance characteristics of water is similar to characteristics of shadow. Many land cover items are consisted in one pixel which is 15m spatial resolution. Nowadays, very high resolution satellite image (IKONOS, Quick Bird) and Digital Surface Model (DSM) by air borne laser scanner can also be used. In this study, mixed pixel analysis of ASTER image has carried out using IKONOS image and DSM. For mixed pixel analysis, high accurated geometric correction was required. Image matching method was applied for generating GCP datasets. IKONOS image was rectified by affine transform. After that, one pixel in ASTER image should be compared with corresponded 15×15 pixel in IKONOS image. Then, training dataset were generated for mixed pixel analysis using visual interpretation of IKONOS image. Finally, classification will be carried out based on Linear Mixture Model. Shadow extraction might be succeeded by the classification. The extracted shadow area was validated using shadow image which generated from 1m${\sim}$2m spatial resolution DSM. The result showed 17.2% error was occurred in mixed pixel. It might be limitation of ASTER image for shadow extraction because of 8bit quantization data.

  • PDF

평행사변형 분류 알고리즘의 성능에 대한 연구 (A Study on the Performance of Parallelepiped Classification Algorithm)

  • 용환기
    • 한국지리정보학회지
    • /
    • 제4권4호
    • /
    • pp.1-7
    • /
    • 2001
  • 위성영상은 GIS 정보획득을 위한 가장 중요한 초기자료로서, 이로부터 주제도와 같은 유용한 정보를 추출하기 위해서는 위성영상 즉 다중스펙트럼 영상을 목적에 적합하게 분류하는 처리과정이 필요하다. 위성영상의 분류기법은 크게 감독기법과 무감독기법으로 나뉘는데, 본 논문에서는 감독분류기법 중의 하나인 평행사변형 알고리즘에서 군집의 초기값 설정이 알고리즘의 성능에 미치는 영향을 분석한다. 본 연구에서는 우선 직렬컴퓨터에서 평행사변형 알고리즘의 성능과 초기값 변화와의 관계를 살펴보고, 이를 확장하여 MIMD 병렬구조 컴퓨터 모델을 사용한 경우에 초기값의 변화가 평행사변형 알고리즘의 성능에 미치는 영향을 분석한다. 평행사변형 알고리즘의 성능은 초기값의 설정에 따라 직렬구조의 컴퓨터를 사용하는 경우에는 최고 2.4배, 그리고 MIMD 병렬구조 모델을 사용한 경우에는 최고 2.5배의 성능 향상을 보였다. 전산모의실험을 통해 위성영상의 감독분류기법에서 초기값이 평행사변형 분류알고리즘의 성능에 상당한 영향을 미치며, 직렬컴퓨터와 MIMD 병렬컴퓨터에서 초기값의 적절한 설정을 통해 분류기법의 성능이 향상됨을 확인하였다.

  • PDF

딥러닝 이미지 인식 기술을 활용한 소고기 등심 세부 부위 분류 (Deep Learning based Image Recognition Models for Beef Sirloin Classification)

  • 한준희;정성훈;박경수;유태선
    • 산업경영시스템학회지
    • /
    • 제44권3호
    • /
    • pp.1-9
    • /
    • 2021
  • This research examines deep learning based image recognition models for beef sirloin classification. The sirloin of beef can be classified as the upper sirloin, the lower sirloin, and the ribeye, whereas during the distribution process they are often simply unified into the sirloin region. In this work, for detailed classification of beef sirloin regions we develop a model that can learn image information in a reasonable computation time using the MobileNet algorithm. In addition, to increase the accuracy of the model we introduce data augmentation methods as well, which amplifies the image data collected during the distribution process. This data augmentation enables to consider a larger size of training data set by which the accuracy of the model can be significantly improved. The data generated during the data proliferation process was tested using the MobileNet algorithm, where the test data set was obtained from the distribution processes in the real-world practice. Through the computational experiences we confirm that the accuracy of the suggested model is up to 83%. We expect that the classification model of this study can contribute to providing a more accurate and detailed information exchange between suppliers and consumers during the distribution process of beef sirloin.

Land Use Classification of TM Imagery in Hilly Areas: Integration of Image Processing and Expert Knowledge

  • Ding, Feng;Chen, Wenhui;Zheng, Daxian
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.1329-1331
    • /
    • 2003
  • Improvement of the classification accuracy is one of the major concerns in the field of remote sensing application research in recent years. Previous research shows that the accuracy of the conventional classification methods based only on the original spectral information were usually unsatisfied and need to be refined by manual edit. This present paper describes a method of combining the image processing, ancillary data (such as digital elevation model) and expert knowledge (especially the knowledge of local professionals) to improve the efficiency and accuracy of the satellite image classification in hilly land. Firstly, the Landsat TM data were geo-referenced. Secondly, the individual bands of the image were intensitynormalized and the normalized difference vegetation index (NDVI) image was also generated. Thirdly, a set of sample pixels (collected from field survey) were utilized to discover their corresponding DN (digital number) ranges in the NDVI image, and to explore the relationships between land use type and its corresponding spectral features . Then, using the knowledge discovered from previous steps as well as knowledge from local professionals, with the support of GIS technology and the ancillary data, a set of conditional statements were applied to perform the TM imagery classification. The results showed that the integration of image processing and spatial analysis functions in GIS improved the overall classification result if compared with the conventional methods.

  • PDF

선별적인 임계값 선택을 이용한 준지도 학습의 SAR 분류 기술 (Semi-Supervised SAR Image Classification via Adaptive Threshold Selection)

  • 도재준;유민정;이재석;문효이;김선옥
    • 한국군사과학기술학회지
    • /
    • 제27권3호
    • /
    • pp.319-328
    • /
    • 2024
  • Semi-supervised learning is a good way to train a classification model using a small number of labeled and large number of unlabeled data. We applied semi-supervised learning to a synthetic aperture radar(SAR) image classification model with a limited number of datasets that are difficult to create. To address the previous difficulties, semi-supervised learning uses a model trained with a small amount of labeled data to generate and learn pseudo labels. Besides, a lot of number of papers use a single fixed threshold to create pseudo labels. In this paper, we present a semi-supervised synthetic aperture radar(SAR) image classification method that applies different thresholds for each class instead of all classes sharing a fixed threshold to improve SAR classification performance with a small number of labeled datasets.

Robust Face Recognition under Limited Training Sample Scenario using Linear Representation

  • Iqbal, Omer;Jadoon, Waqas;ur Rehman, Zia;Khan, Fiaz Gul;Nazir, Babar;Khan, Iftikhar Ahmed
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권7호
    • /
    • pp.3172-3193
    • /
    • 2018
  • Recently, several studies have shown that linear representation based approaches are very effective and efficient for image classification. One of these linear-representation-based approaches is the Collaborative representation (CR) method. The existing algorithms based on CR have two major problems that degrade their classification performance. First problem arises due to the limited number of available training samples. The large variations, caused by illumintion and expression changes, among query and training samples leads to poor classification performance. Second problem occurs when an image is partially noised (contiguous occlusion), as some part of the given image become corrupt the classification performance also degrades. We aim to extend the collaborative representation framework under limited training samples face recognition problem. Our proposed solution will generate virtual samples and intra-class variations from training data to model the variations effectively between query and training samples. For robust classification, the image patches have been utilized to compute representation to address partial occlusion as it leads to more accurate classification results. The proposed method computes representation based on local regions in the images as opposed to CR, which computes representation based on global solution involving entire images. Furthermore, the proposed solution also integrates the locality structure into CR, using Euclidian distance between the query and training samples. Intuitively, if the query sample can be represented by selecting its nearest neighbours, lie on a same linear subspace then the resulting representation will be more discriminate and accurately classify the query sample. Hence our proposed framework model the limited sample face recognition problem into sufficient training samples problem using virtual samples and intra-class variations, generated from training samples that will result in improved classification accuracy as evident from experimental results. Moreover, it compute representation based on local image patches for robust classification and is expected to greatly increase the classification performance for face recognition task.