• Title/Summary/Keyword: Image Board

Search Result 581, Processing Time 0.023 seconds

Analysis of the MSC(Multi-Spectral Camera) Operational Parameters

  • Yong, Sang-Soon;Kong, Jong-Pil;Heo, Haeng-Pal;Kim, Young-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.1
    • /
    • pp.53-59
    • /
    • 2002
  • The MSC is a payload on the KOMPSAT-2 satellite to perform the earth remote sensing. The instrument images the earth using a push-broom motion with a swath width of 15 km and a GSD(Ground Sample Distance) of 1 m over the entire FOV(Field Of View) at altitude 685 km. The instrument is designed to haute an on-orbit operation duty cycle of 20% over the mission lifetime of 3 years with the functions of programmable gain/offset and on-board image data compression/storage. The MSC instrument has one channel for panchromatic imaging and four channel for multi-spectral imaging covering the spectral range from 450nm to 900nm using TDI(Time Belayed Integration) CCD(Charge Coupled Device) FPA(Focal Plane Assembly). The MSC hardware consists of three subsystem, EOS(Electro Optic camera Subsystem), PMU(Payload Management Unit) and PDTS(Payload Data Transmission Subsystem) and each subsystems are currently under development and will be integrated and verified through functional and space environment tests. Final verified MSC will be delivered to spacecraft bus for AIT(Assembly, Integration and Test) and then COMSAT-2 satellite will be launched after verification process through IST(Integrated Satellite Test). In this paper, the introduction of MSC, the configuration of MSC electronics including electrical interlace and design of CEU(Camera Electronic Unit) in EOS are described. MSC Operation parameters induced from the operation concept are discussed and analyzed to find the influence of system for on-orbit operation in future.

Development of Stretchable Joint Motion Sensor for Rehabilitation based on Silver Nanoparticle Direct Printing (은 나노입자 프린팅 기반의 재활치료용 신축성 관절센서 개발)

  • Chae, Woen-Sik;Jung, Jae-Hu
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.3
    • /
    • pp.183-188
    • /
    • 2021
  • Objective: The purpose of this study was to develop a stretchable joint motion sensor that is based on silver nano-particle. Through this sensor, it can be utilized as an equipment for rehabilitation and analyze joint movement. Method: In this study, precursor solution was created, after that, nozel printer (Musashi, Image master 350PC) was used to print on a circuit board. Sourcemeter (Keithley, Keithley-2450) was used in order to evaluate changes of electric resistance as the sensor stretches. In addition, the sensor was attached on center of a knee joint to 2 male adults, and performed knee flexion-extension in order to evaluate accurate analysis; 3 infrared cameras (100 Hz, Motion Master 100, Visol Inc., Korea) were also used to analyze three dimensional movement. Descriptive statistics were suggested for comparing each accuracy of measurement variables of joint motions with the sensor and 3D motions. Results: The change of electric resistance of the sensor indicated multiple of 30 times from initial value in 50% of elongation and the value of electric resistance were distinctively classified by following 10%, 20%, 30%, 40% of elongation respectively. Through using the sensor and 3D camera to analyze movement variable, it showed a resistance of 99% in a knee joint extension, whereas, it indicated about 80% in flexion phase. Conclusion: In this research, the stretchable joint motion sensor was created based on silver nanoparticle that has high conductivity. If the sensor stretches, the distance between nanoparticles recede which lead gradual disconnection of an electric circuit and to have increment of electric resistance. Through evaluating angle of knee joints with observation of sensor's electric resistance, it showed similar a result and propensity from 3D motion analysis. However, unstable electric resistance of the stretchable sensor was observed when it stretches to maximum length, or went through numerous joint movements. Therefore, the sensor need complement that requires stability when it comes to measuring motions in any condition.

Implementation of Neural Network Accelerator for Rendering Noise Reduction on OpenCL (OpenCL을 이용한 랜더링 노이즈 제거를 위한 뉴럴 네트워크 가속기 구현)

  • Nam, Kihun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.4
    • /
    • pp.373-377
    • /
    • 2018
  • In this paper, we propose an implementation of a neural network accelerator for reducing the rendering noise using OpenCL. Among the rendering algorithms, we selects a ray tracing to assure a high quality graphics. Ray tracing rendering uses ray to render, less use of the ray will result in noise. Ray used more will produce a higher quality image but will take operation time longer. To reduce operation time whiles using fewer rays, Learning Base Filtering algorithm using neural network was applied. it's not always produce optimize result. In this paper, a new approach to Matrix Multiplication that is based on General Matrix Multiplication for improved performance. The development environment, we used specialized in high speed parallel processing of OpenCL. The proposed architecture was verified using Kintex UltraScale XKU6909T-2FDFG1157C FPGA board. The time it takes to calculate the parameters is about 1.12 times fast than that of Verilog-HDL structure.

A Case Study of Artificial Intelligence Education Course for Graduate School of Education (교육대학원에서의 인공지능 교과목 운영 사례)

  • Han, Kyujung
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.5
    • /
    • pp.673-681
    • /
    • 2021
  • This study is a case study of artificial intelligence education subjects in the graduate school of education. The main educational contents consisted of understanding and practice of machine learning, data analysis, actual artificial intelligence using Entries, artificial intelligence and physical computing. As a result of the survey on the educational effect after the application of the curriculum, it was found that the students preferred the use of the Entry AI block and the use of the Blacksmith board as a physical computing tool as the priority applied to the elementary education field. In addition, the data analysis area is effective in linking math data and graph education. As a physical computing tool, Husky Lens is useful for scalability by using image processing functions for self-driving car maker education. Suggestions for desirable AI education include training courses by level and reinforcement of data collection and analysis education.

Development of small multi-copter system for indoor collision avoidance flight (실내 비행용 소형 충돌회피 멀티콥터 시스템 개발)

  • Moon, Jung-Ho
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.1
    • /
    • pp.102-110
    • /
    • 2021
  • Recently, multi-copters equipped with various collision avoidance sensors have been introduced to improve flight stability. LiDAR is used to recognize a three-dimensional position. Multiple cameras and real-time SLAM technology are also used to calculate the relative position to obstacles. A three-dimensional depth sensor with a small process and camera is also used. In this study, a small collision-avoidance multi-copter system capable of in-door flight was developed as a platform for the development of collision avoidance software technology. The multi-copter system was equipped with LiDAR, 3D depth sensor, and small image processing board. Object recognition and collision avoidance functions based on the YOLO algorithm were verified through flight tests. This paper deals with recent trends in drone collision avoidance technology, system design/manufacturing process, and flight test results.

Presenting Practical Approaches for AI-specialized Fields in Gwangju Metro-city (광주광역시의 AI 특화분야를 위한 실용적인 접근 사례 제시)

  • Cha, ByungRae;Cha, YoonSeok;Park, Sun;Shin, Byeong-Chun;Kim, JongWon
    • Smart Media Journal
    • /
    • v.10 no.1
    • /
    • pp.55-62
    • /
    • 2021
  • We applied machine learning of semi-supervised learning, transfer learning, and federated learning as examples of AI use cases that can be applied to the three major industries(Automobile industry, Energy industry, and AI/Healthcare industry) of Gwangju Metro-city, and established an ML strategy for AI services for the major industries. Based on the ML strategy of AI service, practical approaches are suggested, the semi-supervised learning approach is used for automobile image recognition technology, and the transfer learning approach is used for diabetic retinopathy detection in the healthcare field. Finally, the case of the federated learning approach is to be used to predict electricity demand. These approaches were tested based on hardware such as single board computer Raspberry Pi, Jaetson Nano, and Intel i-7, and the validity of practical approaches was verified.

Deep Learning Image Processing Technology for Vehicle Occupancy Detection (차량탑승인원 탐지를 위한 딥러닝 영상처리 기술 연구)

  • Jang, SungJin;Jang, JongWook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.8
    • /
    • pp.1026-1031
    • /
    • 2021
  • With the development of global automotive technology and the expansion of market size, demand for vehicles is increasing, which is leading to a decrease in the number of passengers on the road and an increase in the number of vehicles on the road. This causes traffic jams, and in order to solve these problems, the number of illegal vehicles continues to increase. Various technologies are being studied to crack down on these illegal activities. Previously developed systems use trigger equipment to recognize vehicles and photograph vehicles using infrared cameras to detect the number of passengers on board. In this paper, we propose a vehicle occupant detection system with deep learning model techniques without exploiting existing system-applied trigger equipment. The proposed technique proposes a system to detect vehicles by establishing triggers within images and to apply deep learning object recognition models to detect real-time boarding personnel.

Design of Robot Arm for Service Using Deep Learning and Sensors (딥러닝과 센서를 이용한 서비스용 로봇 팔의 설계)

  • Pak, Myeong Suk;Kim, Kyu Tae;Koo, Mo Se;Ko, Young Jun;Kim, Sang Hoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.5
    • /
    • pp.221-228
    • /
    • 2022
  • With the application of artificial intelligence technology, robots can provide efficient services in real life. Unlike industrial manipulators that do simple repetitive work, this study presented design methods of 6 degree of freedom robot arm and intelligent object search and movement methods for use alone or in collaboration with no place restrictions in the service robot field and verified performance. Using a depth camera and deep learning in the ROS environment of the embedded board included in the robot arm, the robot arm detects objects and moves to the object area through inverse kinematics analysis. In addition, when contacting an object, it was possible to accurately hold and move the object through the analysis of the force sensor value. To verify the performance of the manufactured robot arm, experiments were conducted on accurate positioning of objects through deep learning and image processing, motor control, and object separation, and finally robot arm was tested to separate various cups commonly used in cafes to check whether they actually operate.

Analysis of Design Elements and Heating System of Domestic and Foreign Commercial Electrical Heated Clothing (국내외 발열의류의 디자인 요소 및 발열시스템 분석)

  • Kim, Kyuyeon;Kim, Siyeon;Lim, Daeyoung;Ha, Jisoo;Jeong, Wonyoung
    • Fashion & Textile Research Journal
    • /
    • v.23 no.2
    • /
    • pp.273-289
    • /
    • 2021
  • This study aimed to examine the appearance of heated clothing in relation to fashion trends by analyzing constructive components of clothing using product images and actual products. A total of 91 images of domestic and foreign heated clothing products were collected, and a product analysis conducted with six parameters of item classification, namely, concept and image, silhouette, color, number of heating elements, and heating parts. In addition, an in-depth analysis was carried out with 11 products among them, while focusing on further detailed components of the design and heating system. As a result, the overall exterior design of domestic products has been changed from outdoor clothing to daily clothing reflecting the current design trend. Compared with domestic products, foreign products showed a diverse assortment and a greater number of heating regions per individual item of clothing. The current heating system commonly consists of a heating element, power source, controller board, and wires, although the existence and type of switches differed from product to product. To develop a more efficiently heated clothing to expand the market, the design, ease of use, safety, consumer preference, heating functionality, and durability should be considered. Along with design recommendations for future heated clothing, this study also provides a practical guide to the technical aspects of the design of the components of heated clothing.

Integrated Ship Cybersecurity Management as a Part of Maritime Safety and Security System

  • Melnyk, Oleksiy;Onyshchenko, Svitlana;Pavlova, Nataliia;Kravchenko, Oleksandra;Borovyk, Svitlana
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.135-140
    • /
    • 2022
  • Scientific and technological progress is also fundamental to the evolving merchant shipping industry, both in terms of the size and speed of modern ships and in the level of their technical capabilities. While the freight performance of ships is growing, the number of crew on board is steadily decreasing, as more work processes are being automated through the implementation of information technologies, including ship management systems. Although there have been repeated appeals from international maritime organizations to focus on building effective maritime security defenses against cyber attacks, the problems have remained unresolved. Owners of shipping companies do not disclose information about cyberattack attempts or incidents against them due to fear of commercial losses or consequences, such as loss of image, customer and insurance claims, and investigations by independent international organizations and government agencies. Issues of cybersecurity of control systems in the world today have gained importance, due to the fact that existing threats concern not only the security of technical means and devices, but also issues of environmental safety and safety of life at sea. The article examines the implementation of cyber risk management in the shipping industry, providing recommendations for the safe ship operation and its systems in order to improve vulnerability to external threats related to cyberattacks, and to ensure the safety and security of such a technical object as a seagoing ship.