• Title/Summary/Keyword: Ilwol reservoir

Search Result 4, Processing Time 0.018 seconds

Variances of Environmental Factors during Water Bloom by Microcystis aeruginosa (K$\ddot{u}$tzing) K$\ddot{u}$tzing in Ilwol Reservoir, Suwon (수원 일월저수지에서 Microcystis aeruginosa (K$\ddot{u}$tzing) K$\ddot{u}$tzing 수화현상 시 환경요인들의 변화)

  • Kim, Ji-Eun;Park, Jung-Won;Jo, Ki-An;Kim, Si-Kyoon
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.2
    • /
    • pp.265-275
    • /
    • 2013
  • Variances in environmental factors were followed in Ilwol reservoir, Suwon, during bloom of Microcystis aeruginosa (K$\ddot{u}$tzing) K$\ddot{u}$tzing, Cyanophtya from August to October, 2011. M. aeruginosa dominated the water column throughout the investigation period. The water temperature varied from $25.7^{\circ}C$ to $28.4^{\circ}C$, pH 8.40 to 11.17, CODcr 4.25 to $72.00mg\;L^{-1}$, electrical conductivity 333.1 to $749.0{\mu}g\;cm^{-1}$, and Chl-a 22 to $185mg\;L^{-1}$. In particular, the high levels of CODcr is likely indicate high contribution of autochthonous organic matters in the reservoir. TN varied from 28.86 to $56.75mg\;L^{-1}$, TP 0.20 to $1.24mg\;L^{-1}$, Fe 0.11 to $1.05mg\;L^{-1}$, and Si 3.13 to $7.46mg\;L^{-1}$. These increases imply constant accumulation in Ilwol reservior, and reinforce the idea of autochthonous organic matters input in the reservoir. The Korea Trophic Status Index ($TSI_KO$) varied from 37.19 to 147.22. Trophic levels varied from mesotrophic to hypertrophic level, and differed spatio-temporally. Therefore, it is concluded that $TSI_KO$ is useful for analyzing trophic status of reservoirs.

Wetland Environment and Vegetation Development of the Ilwol Reservoir (일월저수지의 습지 환경과 식생발달)

  • Han, Youn Ho;Kim, Dong Yeob;An, Won Yong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.2
    • /
    • pp.9-16
    • /
    • 2002
  • Wetland areas have characteristics of dynamic cycling of materials in relation to land and water. Although having great potential for providing unique natural environments, they are vulnurable to human land use activities and some places are in danger of being eliminated. This study had an objective of investigating vegetation changes in Ilwol reservoir to provide basic information for the preservation and ecological restoration of the wetland area. Wetland vegetation was investigated along with the site conditions which may affect the vegetation development. There were 10 vegetation types with various species composition. Humulus japonicus, Zizania latifolia, Phragmites japonica, Bidens frondosa, Typha orientalis, Scirpus tabernaemontari, Phragmites communis, Persicaria thunbergii were the major wetland plants found at the reservoir area. Precipitation and water level were the elements mostly affecting the distribution of the plants. Phragmites japonica was closest to the water front, followed by Zizania latifolia, Humulus japonicus and Bidens frondosa. Most plant zones were predominated by one or a few species.

A Study on Air Temperature-reducing Effects by Irrigation Reservoir (도시 내 소규모 관개저수지의 기온 저감효과에 관한 연구 - 수원시 일월저수지를 대상으로 -)

  • Zheng, Hai-Yan;Jin, Wen-Cheng;Lee, Kyoo-Seock;Oh, Sung-Nam
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.1
    • /
    • pp.32-39
    • /
    • 2010
  • The air temperature-reducing effects by irrigation reservoir in urban area was investigated at Ilwol Pond (IWP). Air temperature and humidity data were observed at 10minute interval from September 1th, 2008 to August 31th, 2009. Air temperature of IWP and Sumsung Apartment (SAT) were analyzed to examine air temperature-reducing effects by IWP in terms of diurnal and seasonal variation. As a result, the average air temperature difference between IWP and SAT was $0.6^{\circ}C$ and the nighttime shows more air temperature-reducing effects. The dominant air temperature-reducing effects by IWP occurred at fall night and summer daytime. However, the air temperature-reducing effects by IWP is lower to that by Arboretum (ARB).

Accumulation of Microcystins in Fish and Evaluation of Potential Human Health Risks: A Case Study on a Eutrophic Reservoir in Korea (마이크로시스틴의 어류내 축적성 및 인체 위해성 평가: 국내 저수지 사례연구)

  • Yoon, Hyojung;Seo, Jungkwan;Kim, Taksoo;Jo, Areum;Kim, Jungkon;Lee, Doohee;Kim, Pilje;Choi, Kyunghee
    • Journal of Environmental Health Sciences
    • /
    • v.42 no.1
    • /
    • pp.10-18
    • /
    • 2016
  • Objectives: Microcystin (MC) produced during cyanobacterial blooms is a worldwide problem presenting a serious health threats to humans and ecosystems. During July through October of 2013, the Ilwol Reservoir experienced a high biomass of phytoplankton (maximum $211.7mg/m^3$ of Chlorophyll-a) containing the toxigenic cyanobacterium Oscillatoria sp. The aim of this study is to analyze MC concentration in the reservoir water, as well as in representative fish species (Carassius cuvieri, Carassius auratus, Channa argus). We also evaluated the human health risk of exposure to MCs accumulated in the fish. Methods: Concentrations of MCs in the water and fish samples were analyzed by liquid chromatography with a triple quadrupole tandem mass spectrometer (LC/MS/MS) and enzyme-linked immunosorbent assay (ELISA). Results: The total levels of four MC variants, including MC-LR, MC-RR, MC-YR and MC-LA were below the WHO drinking water guideline limit (1 ug MC-LR per liter) both for the dissolved and particulate fraction present in the water samples. The mean MC concentrations in the livers of all species were significantly higher than in the gills (p < 0.01) and muscles (p < 0.05). The values of estimated daily intake of MCs in muscles, the edible part of the fish, would be only $0.005-0.015{\mu}g/kg{\cdot}day$, much lower than WHO's provisional tolerable daily intake of $0.04{\mu}g/kg{\cdot}day$. Conclusion: This study suggests that, owing to the spatial distribution or temporal variation of MC, there is a need for careful monitoring of cyanotoxin in reservoir water and aquatic animals to protect public health.